Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (144.59 KB, 7 trang )
<span class='text_page_counter'>(1)</span>ĐỀ CƯƠNG ÔN TẬP HỌC KỲ II Môn : Toán – Khối 11 I/Đại số và Giải tích 1/ Tìm giới hạn của dãy số, giới hạn của hàm số. 3/ Khảo sát tính liên tục của hàm số tại 1 điểm. 4/ Ứng dụng tính liên tục của hàm số để chứng minh sự tồn tại nghiệm. 5/ Lập phương trình tiếp tuyến của đường cong biết tiếp điểm hoặc biết hệ số góc của tiếp tuyến . 6/ Dùng các qui tắc, công thức để tính đạo hàm của một hàm số . 7/ Giải phương trình , bất phương trình đạo hàm. 8/ Cấp số cộng , cấp số nhân ( chương trình nâng cao ) II/ Hình học 1/Chứng minh hai đường thẳng vuông góc với nhau 2/Chứng minh đường thẳng vuông góc với mặt phẳng 3/ Chứng minh hai mặt phẳng vuông góc với nhau 4/ Tính được góc giữa đt và mp , góc giữa hai mp . 5/Tính khoảng cách từ một điểm đến mặt phẳng.. A. GIỚI HẠN CỦA DÃY SỐ Bài 1: Tính các giới hạn sau 1) lim. 3n 2 5n 4 ; 2 n2. 2) lim. 5) lim. n 3 n 2 sin n 1 ; 2n 4 n 2 7. 6) lim. 6 3n ; 3n 2 5. 3) lim. 1 4n 9n 2 ; 1 2n. Bài 3: Tính các giới hạn sau: 1 7 n 2 7.2n 4n 1) lim ; 2) lim ; 3 7n 2.3n 4n 3n 4n 1 2 n 3n 4) lim 2n ; 5)lim n ; 2 10.3n 7 2.3 5.2n Bài 4: Tính các giới hạn sau: 3n 2 1 1) lim n 2 n n ; 2) lim n. . . 7) lim. 4n 2 3n 7 ; n 3 7n 5 2n 2 n 4 2n 4 n 2 1. ;. 4) lim. 2n 5 6n 9 1 3n 5. 8) lim. n 4 2n 3 2n 2 3. 5.2n 3n ; 2n 1 3n 1 3.5n 2.3n 6)lim n ; 5 5.3n 3) lim. n2 1. ;. 3) lim. 2n 2 1 n 2 1 ; n 1. B. GIỚI HẠN CỦA HÀM SỐ I. Giới hạn của hàm số 1-Tìm giới hạn bằmg phương pháp thê trực tiếp Bài 1: Tính các giới hạn sau: 2. 1). lim ( x 2 x 1). x 1. 1 6) lim x 1 ; x 0 x. 2). lim( x 2 x 1) x 1. 1 x; 7) lim x 0 1 1 x 1. lim 3 4 x 3) x 3. 2. x x3 ; x 1 (2x 1)(x 4 3). 8) lim. 0 2-Tìm giới hạn dạng 0 bằmg phương pháp khử nhân tử chung Bài 1: Tính các giới hạn sau. x 1 4) x 1 2 x 1 ; lim. 9) lim x 2 4 ; x 3. x 2 x 1 ; 5 5) x 1 2 x 3 lim. 10) lim x 2. x 4 3x 1 . 2x 2 1.
<span class='text_page_counter'>(2)</span> x2 1 ; x1 x 1. x 3 ; x 3 x 2 2x 15. 1) lim. 2) lim. x2 x 5) lim ; x 1 x1. 3 1 6) lim ; x 1 1 x 1 x3 . 3) lim. x 2 3x 2 2. x4 1 ; x 1 x 2 2x 3. ;. 4) lim. x 2 3 x 2 8 7) lim ; x 2. 8x 3 1 8) lim 2 ; 1 x 6x 5x 1. x. x 0. 2. 0 3-Tìm giới hạn dạng 0 bằmg phương pháp nhân lượng liên hợp Bài 1: Tính các giới hạn sau x 4 2 x 3 2 1) lim ; 2) lim ; x 0 x 1 x x 1 x 2 x 4 ; x 6. 4) lim x 6. 5) lim x 5. 3) lim x 7. x 4 x 2 ; x 2 25. 5-Tính giới hạn dạng của hàm số Bài 1: Tính các giới hạn sau 4x 1 2x2 x 1 1) lim 2 ; 2) lim x 4 x 3 x x x2 1. 2 x 3 ; x 2 49. 6) lim x 2. x2 5 x 1 x 2. 5x 3 1 x x 1 x. 3) lim. 7-Tính giới hạn dạng của hàm số Bài 1: Tính các giới hạn sau 1) lim. x . . x 1 . . x ;. 2) lim. x . . . x 2 x 1 x ;. 3) lim. x . . . x 2 1 x 1 ;. II. Giới hạn một bên Bài 1: Dựa vào định nghĩa giới hạn một bên, tìm các giới hạn sau x 5 2x 1 a) lim x 1; b) lim 5 x 2x ; c) lim ; d) lim . x 1 x 5 x 3 x 3 x 1 x 1 3 x víi x<-1 f x 2 f x , lim f x vµ lim f x 2x 3 víi x 1 . Tìm xlim x 1 1 x 1 Bài 2: Cho hàm số (nếu có).. . . III. Hàm số liên tục tại một điểm Bài 1: Xét tính liên tục của các hàm số sau tại điểm cho trước x 2 3x 2 víi x 2 1)f x x 2 1 víi x=2 . t¹i ®iÓm x=2;. x3 1 víi x 1 2)f x x 1 2 víi x=1 . t¹i ®iÓm x=1;. 1 1 x x2 4 víi x 0 víi x -2 x 3)f x t¹i ®iÓm x=0 4)f x x 2 1 4 víi x=-2 víi x=0 2 Bài 2: Tìm a để các hàm số sau liên tục của tại điểm x=1 x a víi x 1 x3 x 2 2x 2 víi x 1 1)f x x 2 1 ; 2)f x . x 1 víi x<1 víi x=1 x 1 3x a. C. ĐẠO HÀM. t¹i ®iÓm x=-2.
<span class='text_page_counter'>(3)</span> 1 1 x neáu x 0 x f x 1 neáu x 0 2 Bài 1 : Cho hàm số a. Chứng minh rằng hàm số liên tục tại x0 = 0 b. Tính f’(x0) nếu có . Bài 2: Tính đạo hàm của các hàm số. 1 2 3 y x 5 x 4 x3 x 2 4 x 5 2 3 2 a) 1 1 y x x 2 0,5 x 4 4 3 b). x 4 x3 x 2 y x a3 4 3 2 d) (a là hằng số). 1 3 x 2 x 5 3 c) Bài 3: Tính đạo hàm của các hàm số sau: e). 2x 4 y 2 x c) 2x 1 y 4x 3 d). f). 2 x x x. 3. y 2x 4 . 1 3 x 2 x 5 3. e). y 2x 4 . 2 a) y (x 3x)(2 x) 2 2 b) y ( x 2 x 3).(2 x 3). . y. f). y. x 2 5x 4 3x 6. y. x2 3x 3 x 1. y. g). . 1 x 1 1 x . 3 x. 2. 1 x x2 y 1 x x2 h). y i). . 2x x2 1. y x 1 k). 2 x 1. Bài 4: Tính đạo hàm của các hàm số sau: 7. a) y ( x x ). 2 4 f) y (x x 1). 2. 3 2 2 b) y (2 x 3x 6 x 1). 2 5 g) y (1 2x ). 2 3 c) y (1 2 x ) 2 3 y ( x x ) d). 2x 1 y x 1 h). y. 3 y 2 4x e). i). 3. 1 x x 1. y. j). 1 2. (x 2x 5)2. 2 k) y 3 2x 1 x y 2 x l). 2. Bài 5: Tính đạo hàm của các hàm số sau: 2. a) y x 1. y. 1 2x 1. y. 1 2x 3. d). g). b) y 1 2 x x. 2. 2. e) y x 3 x 2. y h). 1 x 1 x. c) y x 1 . 1 x. f) y x 4 6 x. 2 j) y 2 x 5 x 1. 4.
<span class='text_page_counter'>(4)</span> Bài 6: Tính đạo hàm của các hàm số sau 2. 2. a) y sin x. b) y sin 2 x cos3 x 4. y cos 2 x 4 d) g) y tan 3 x cot 3 x. y sin 2 4 x 3 e) 3 h) y cos x 1. i) y cot 3 x. y tan 2 x 4 k). l) y=sinxcos2x. 2. j) y cos2 x sin x. c) y tan x 2. 2. f) y sin 2 x cos x 2. f '(x) 0. Bài 7 : Giải phương trình với: f x x sin 2 x a) f x co s 2 x 3. x 2 c) f ' x 0 Bài 8 : Giải bất phương trình với: f x x 3x 1 3. a). f x . 2. b). b) f(x) cos x 3 s ón 2x 1 d) f(x) 3cos x 4sin x 5x x 2 3x 3 x 1. c). f x 3 2x x2. f x x 8 x 2 f x x 1 5 x d) e) Bài 9 : Cho hàm số f(x) = x5 + x3 – 2x - 3. Chứng minh rằng f’(1) + f’(-1) = - 4f(0). D. TIẾP TUYẾN Phương trình tiếp tuyến của đồ thị hàm số y = f(x) y f(x) . 3x 1 1 x .. Bài 1: Gọi (C) là đồ thị của hàm số a) Viết phương trình tiếp tuyến của (C) tại điểm A(2; –7). b) Viết phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục hoành. c) Viết phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục tung. 1 y x 100 2 d) Viết phương trình tiếp tuyến của (C) biết tiếp tuyến song song với d: .. e) Viết phương trình tiếp tuyến của (C) biết tiếp tuyến vuông góc với : 2x + 2y – 5 = 0. 3. 2. Bài 2: Gọi (C) là đồ thị của hàm số y x 3x . a) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm I(1, –2). b) Chứng minh rằng các tiếp tuyến khác của đồ thị (C) không đi qua I. 2 Bài 3: Gọi (C) là đồ thị của hàm số y 1 x x . Tìm phương trình tiếp tuyến với (C):. 1 . a) Tại điểm có hoành độ x0 = 2. b) Song song với đường thẳng x + 2y = 0. 3. 2. Bài 6: Gọi (C) là đồ thị của hàm số y x 5 x 2 Viết phương trình tiếp tuyến của (C) sao cho tiếp tuyến đó a) Song song với đường thẳng y 3 x 1.
<span class='text_page_counter'>(5)</span> 1 y x 4 7 b) Vuông góc với đường thẳng x2 y x 2 Bài 7. Gọi (C) là đồ thị của hàm số Viết phương trình tiếp tuyến của đồ thị (C) a) Tại điểm có hoành độ bằng 1 c) Biết tiếp tuyến đó có hệ số góc là 4. 1 b) tại điểm có tung độ bằng 3. 3. Bài 8: Gọi (C) là đồ thị của hàm số y x 3 x 2 Viết phương trình tiếp tuyến của (C) sao cho tiếp tuyến đó a) Nhận điểm A(2;4) làm tiếp điểm. b) Song song với đường thẳng y 9 x 2 2x 4 y x 3 có đồ thị ( C ) . Bài 9 : Cho hàm số a) Viết phương trình tiếp tuyến của ( C ) tại giao điểm của ( C ) với trục hoành . b) Viết phương trình tiếp tuyến của ( C ) vuông góc đường thẳng x - 2y -1 = 0. E. CẤP SỐ CỘNG – CẤP SỐ NHÂN Baøi 1: của nó:. Trong các dãy số (un) dưới đây, dãy số nào là cấp số cộng, khi đó cho biết số hạng đầu và công sai. a) un = 3n – 7. b). un . 3n 2 5. c). un n2. 7 3n n un 1 2 2 d) e) f) Baøi 2: Tìm số hạng đầu và công sai của cấp số cộng, biết: u1 u5 u3 10 u2 u5 u3 10 u3 15 u1 u6 17 u4 u6 26 u 18 a) b) c) 14 u7 u3 8 u1 u3 u5 12 u7 u15 60 2 2 u .u 75 u1u2 u3 8 u u 1170 d) 2 7 e) 4 12 f) u8 u4 4 u8 2u3 5 S6 21 S8 64 g) h) Baøi 3: a) Giữa các số 7 và 35 hãy đặt thêm 6 số nữa để được một cấp số cộng. b) Giữa các số 4 và 67 hãy đặt thêm 20 số nữa để được một cấp số cộng. Baøi 4: a) Tìm 3 số hạng liên tiếp của một cấp số cộng, biết tổng của chúng là 27 và tổng các bình phương của chúng là 293. b) Tìm 4 số hạng liên tiếp của một cấp số cộng, biết tổng của chúng bằng 22 và tổng các bình phương của chúng bằng 66. Baøi 5: a) Ba góc của một tam giác vuông lập thành một cấp số cộng. Tìm số đo các góc đó. b) Số đo các góc của một đa giác lồi có 9 cạnh lập thành một cấp số cộng có công sai d = 3 0. Tìm số đo của các góc đó. c) Số đo các góc của một tứ giác lồi lập thành một cấp số cộng và góc lớn nhất gấp 5 lần góc nhỏ nhất. Tìm số đo các góc đó. Baøi 6: Tìm x để 3 số a, b, c lập thành một cấp số cộng, với: un 3n. un . 2 a) a 10 3 x; b 2 x 3; c 7 4 x. 2 b) a x 1; b 3 x 2; c x 1.
<span class='text_page_counter'>(6)</span> Bài 7: Tìm số hạng đầu và công bội của cấp số nhân, biết: u4 u2 72 u1 u3 u5 65 u3 u5 90 u u 144 u1 u7 325 u u 240 a) 5 3 b) c) 2 6 Bài 8: a) Giữa các số 160 và 5 hãy chèn vào 4 số nữa để tạo thành một cấp số nhân. b) Giữa các số 243 và 1 hãy đặt thêm 4 số nữa để tạo thành một cấp số nhân. Bài 9: Tìm 3 số hạng liên tiếp của một cấp số nhân biết tổng của chúng là 19 và tích là 216.. F. HÌNH HỌC Bài 1. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , SA vuông góc với đáy , SA = a 2 . a) Chứng minh rằng các mặt bên hình chóp là những tam giác vuông. b) CMR (SAC) (SBD) . c) Tính góc giữa SC và mp ( SAB ) . d) Tính góc giữa hai mặt phẳng ( SBD ) và ( ABCD) e) Tính d(A, (SCD)) . Bài 2: Cho hình chóp S. ABC có đáy ABC là tam giác vuông tại C và SB (ABC), biết AC = a √ 2 , BC = a, SB = 3a. a) Chứng minh: AC (SBC) b) Gọi BH là đường cao của tam giác SBC. Chứng minh: SA BH. c) Tính góc giữa đường thẳng SA và mặt phẳng (ABC) Bài 3: Cho hình chóp S. ABCD có đáy ABCD là hình thoi cạnh a có góc BAD = 600 và SA=SB = SD = a a) Chứng minh (SAC) vuông góc với (ABCD) b) Chứng minh tam giác SAC vuông c) Tính khoảng cách từ S đến (ABCD) Bài 4: Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, mặt bên (SAB) là tam giác đều và vuông góc với đáy. Gọi E, F là trung điểm của AB và CD. a) Cho biết tam giác SCD vuông cân tại S. Chứng minh: SE (SCD) và SF (SAB). b) Gọi H là hình chiếu vuông góc của S trên EF. Chứng minh: SH AC c)Tính góc giữa đường thẳng BD và mặt phẳng (SAD) Bài 5. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA ( ABCD) và SA = 2a. a). Chứng minh (SAC ) (SBD ) ; (SCD ) (SAD ) b). Tính góc giữa SD và (ABCD); SB và (SAD) ; SB và (SAC); c). Tính d(A, (SCD)); d(B,(SAC)) Bài 6. Hình chóp S.ABC. ABC vuông tại A, góc B = 600 , AB = a, hai mặt bên (SAB) và (SBC) vuông góc với đáy; SB = a. Hạ BH SA (H SA); BK SC (K SC). a) CM: SB (ABC) b) CM: mp(BHK) SC. c) CM: BHK vuông . d) Tính cosin của góc tạo bởi SA và (BHK). Bài 7: Cho hình chóp tứ giác đều S. ABCD, cạnh đáy bằng a, cạnh bên bằng. a √5 . Gọi O là tâm của hình 2. vuông ABCD. Và M là trung điểm của SC. a) Chứng minh: (MBD) (SAC) b) Tính góc giữa SA và mp(ABCD) . c) Tính góc giữa hai mặt phẳng ( MBD) và (ABCD). Tính góc giữa hai mặt phẳng ( SAB) và (ABCD Bi 8: Cho hình lăng trụ ABC.ABC có AA (ABC) và AA = a, đáy ABC là tam giác vuông tại A có BC = 2a, AB = a 3 . a) Tính khoảng cách từ AA đến mặt phẳng (BCCB)..
<span class='text_page_counter'>(7)</span> b) Tính khoảng cách từ A đến (ABC). c) Chứng minh rằng AB (ACCA) và tính khoảng cách từ A đến mặt phẳng (ABC)..
<span class='text_page_counter'>(8)</span>