49
Âải Hc  Nàơng - Trỉåìng Âải hc Bạch Khoa
Khoa Âiãûn - Bäü män Âiãûn Cäng Nghiãûp
Giạo trçnh K thût Âiãûn
Biãn soản: Nguùn Häưng Anh, Bi Táún Låüi, Nguùn Vàn Táún, V Quang Sån
Chỉång 4
MẢCH ÂIÃÛN BA PHA
4.1. KHẠI NIÃÛM CHUNG
Mảch ba pha l mảch âiãûn m ngưn âiãûn nàng ca nọ gäưm ba sââ hçnh sin
cng táưn säú nhỉng lãûch nhau mäüt gọc α no âọ. Trong thỉûc tãú thỉåìng dng ngưn
âiãûn nàng ba pha gäưm ba sââ hçnh sin cng táưn säú, cng biãûn âäü v lãûch nhau mäüt
gọc 120
o
. Ngưn ba pha nhỉ váûy âỉåüc gi l ngưn ba pha âäúi xỉïng. Mäùi mảch
mäüt pha âỉåüc gi l pha ca mảch ba pha. Mảch ba pha bao gäưm ngưn âiãûn ba
pha, âỉåìng dáy truưn ti v cạc phủ ti ba pha.
Âãø tảo ngưn âiãûn ba pha, ta dng mạy phạt âiãûn âäưng bäü ba pha. Sau âáy ta
xẹt cáúu tảo v ngun l ca mạy phạt âiãûn ba pha âån gin (hçnh 4.1).
Hçnh 4.2
Âäư thë tỉïc thåìi v vectå sââ ba pha
ωt
e
e
A
e
B
e
C
0
120
0
240
0
360
0
A
E
&
120
0
120
0
120
0
C
E
&
B
E
&
Hçnh 4.
1 Mạy phạt âäưng bäü ba pha
A
X
B
Y
C
Z
N
S
n
120
o
120
o
120
o
Cáúu tảo: Mạy phạt âiãûn ba pha gäưm hai pháưn: stato v räto (hçnh 4.1).
• Stato (pháưn ténh): Li thẹp hçnh trủ, bãn trong cọ sạu rnh, trãn mäùi càûp
rnh ta âàût cạc dáy qún AX, BY, CZ cọ cng säú vng dáy v lãûch nhau mäüt gọc
120
0
trong khäng gian. Mäùi dáy qún l mäüt pha. Dáy qún AX l pha A, BY l
pha B v CZ l pha C.
50
• Räto (pháưn quay): Cng l li thẹp hçnh trủ, âàût bãn trong stato v cọ thãø
quay quanh trủc. Nọ chênh l nam chám âiãûn S-N âỉåüc tỉì họa bàòng dng âiãûn mäüt
chiãưu láúy tỉì ngưn kêch thêch bãn ngoi.
Ngun l : Khi lm viãûc, räto quay âãưu våïi täúc âäü ω, tỉì trỉåìng räto s láưn
lỉåüc quẹt qua dáy qún stato lm cho mäùi dáy qún stato cm ỉïng mäüt sââ xoay
chiãưu hçnh sin, cạc sââ náưy hon ton giäúng nhau v lãûch pha nhau 120
0
ỉïng våïi
1/3 chu k.
Nãúu chn thåìi âiãøm tênh toạn ban âáưu t = 0 ỉïng våïi sââ trong cün dáy AX
(pha A) bàòng khäng thç cạc sââ e
A
, e
B
, e
C
trong cạc cün dáy AX, BY,CZ ca cạc
pha A, B, C cọ dảng l :
tsinE2e
A
ω=
(4.1a)
)120tsin(E2e
o
B
−ω=
(4.1b)
)240tsin(E2e
o
C
−ω=
(4.1c)
Chuøn cạc sââ sang dảng nh phỉïc:
(4.2a)
EeEE
0
0j
A
==
&
0
120j
B
eEE
−
=
&
(4.2b)
00
120j240j
C
eEeEE ==
−
&
(4.2c)
Tỉì âäư thë hçnh sin v âäư thë vectå sââ ba pha (hçnh 4.2), ta cọ :
0eee
CBA
=++
hồûc (4.3)
0EEE
CBA
=++
&&&
Hãû thäúng sââ ba pha nhỉ (4.3) gi l hãû thäúng sââ ba pha âäúi xỉïng.
Âem näúi dáy qún ba pha ca ngưn âiãûn l AX, BY, CZ våïi phủ ti Z
A
, Z
B
, Z
C
ta âỉåüc hçnh 4.2.
Tỉì hçnh 4.2, ta tháúy :
• Näúi 6 dáy âãún ba phủ
ti nãn khäng kinh tãú,
vç váûy ta cọ cạch näúi
hçnh sao (Y) & näúi
hçnh tam giạc (Δ).
• Mäùi pha ca mạy
phạt (ngưn) hồûc
ca phủ ti âãưu cọ hai
âáưu ra : Âiãøm âáưu v
âiãøm cúi. Âiãøm âáưu
thỉåìng k hiãûu A, B, C v âiãøm cúi k hiãûu X, Y, Z.
A
X
C
Z
B
Y
A
I
&
A
Z
C
Z
B
Z
C
I
&
B
I
&
Hçnh 4.2
Ba mảch mäüt pha khäng liãn hãû nhau
A
E
&
C
E
&
B
E
&
51
Qui ỉåïc :
1. Chiãưu dng âiãûn trong cạc pha ca ngưn âi tỉì âiãøm cúi âãún âiãøm âáưu, cn
trong cạc pha ca phủ ti âi tỉì âiãøm âáưu âãún âiãøm cúi.
2. Âiãøm âáưu v âiãøm cúi trong cạc pha ca ngưn v ca phủ ti khäng thãø
qui ỉåïc mäüt cạch ty tiãûn m phi theo mäüt qui tàõc nháút âënh sao cho:
+ Âäúi våïi ngưn: sââ trong cạc pha l âäúi xỉïng ( ).
0EEE
CBA
=++
&&&
+ Âäúi våïi phủ ti: Dng âiãûn trong cạc pha l âäúi xỉïng ( )
0III
CBA
=++
&&&
Phủ ti ba pha âäúi xỉïng l khi täøng tråí cạc pha bàòng nhau
ZZZZ
CBA
===
.
Mảch ba pha âäúi xỉïng l mảch ba pha cọ ngưn, phủ ti v täøng tråí âỉåìng dáy
âäúi xỉïng. Ngỉåüc lải mảch ba pha khäng häüi â mäüt trong cạc âiãưu kiãûn trãn gi l
mảch ba pha khäng âäúi xỉïng.
4.2. CẠCH NÄÚI HÇNH SAO (Y)
Cạch näúi hçnh sao l näúi ba âiãøm cúi ca cạc pha lải våïi nhau tảo thnh âiãøm
trung tênh (hçnh 4.3).
Khi näúi ba âiãøm
cúi X,Y,Z ca ngưn
lải thnh âiãøm 0, gi
l âiãøm trung tênh ca
ngưn, cn näúi
X’,Y’,Z’ ca ti lải
thnh âiãøm 0’ gi l
âiãøm trung tênh ca
ti. Dáy 00’ gi l dáy
trung tênh. Dáy AA’,
BB’, CC’ l cạc dáy
pha. Mảch âiãûn cọ ba
dáy pha v mäüt dáy trung tênh gi l mảch ba pha bäún dáy.
Qui ỉåïc :
+ Dng pha : dng chảy trong cạc pha ca ngưn hồûc phủ ti. K hiãûu : I
p
.
+ Dng dáy : dng chảy trong cạc dáy pha. K hiãûu : I
d
.
+ Âiãûn ạp pha : âiãûn ạp ca âiãøm âáưu v âiãøm cúi ca mäüt pha no âọ. K
hiãûu : U
p
(hồûc giỉỵa mäüt dáy pha våïi dáy trung tênh).
+ Âiãûn ạp dáy : âiãûn ạp giỉỵa 2 âiãøm âáưu ca cạc pha. K hiãûu : U
d
(hồûc giỉỵa
hai dáy pha våïi nhau).
Hçnh 4.3
Mảch ba pha ngưn v phủ ti näúi sao
Z
A
Z
B
Z
C
A
I
&
B
I
&
C
I
&
o
I
&
A
E
&
A
U
&
p
U
AB
U
&
d
U
B
U
&
B
E
&
C
E
&
p
U
A’
B’
C’
A
B
C
0’0
I
p
I
p
I
d
52
Xẹt quan hãû
:
pd
U vU
;
pd
IvI
trong mảch ba pha âäúi xỉïng näúi Y
:
+ Quan hãû :
pd
U vU
Ta cọ: (4.4a)
BAAB
UUU
&&&
−=
CBBC
UUU
&&&
−=
(4.4b)
ACCA
UUU
&&&
−=
(4.4c)
A
B
C
BC
U
&
AB
U
&
AB
U
&
CA
U
&
30
o
U
A
U
B
U
A
B
U
&
−
Hçnh 4.4
Âäư thë vectå
B
0
Xẹt Δ 0AB (hçnh 4.4), ta cọ:
o
30OA2OB cos
=
OA3OB
=
Ta tháúy: Âäü di OB = U
d
;
Âäü di OA = U
p
, nãn:
pd
U3U
=
(4.5)
+ Quan hãû :
p
I v
d
I
(4.6)
p
I=
d
I
Khi näúi hçnh sao phủ ti v ngưn ba pha âäúi xỉïng thç hãû thäúng dng âiãûn,
âiãûn ạp dáy v pha cng âäúi xỉïng, vãư trë säú thç âiãûn ạp dáy låïn hån
3
âiãûn ạp
pha. Cn vãư pha, âiãûn ạp dáy lãûch pha nhau 120
CABCAB
UUU
&&&
,,
0
v vỉåüt trỉåïc
âiãûn ạp pha tỉång ỉïng mäüt gọc 30
0
(hçnh 4.4).
Ta gi l dng trong dáy trung tênh (hçnh 4.3).
0
I
&
Khi ngưn v c ti ba pha âäúi xỉïng : . Khi âọ dáy trung
tênh khäng cọ tạc dủng nãn ta b qua dáy trung tênh, mảch âiãûn ba pha cn l mảch
ba pha ba dáy nhỉ hçnh 4.5.
0IIII
0CBA
==++
&&&&
Hçnh 4.5
Mảch ba pha ba dáy näúi sao
Z
A
Z
B
Z
C
A
I
&
B
I
&
C
I
&
A
E
&
B
E
&
C
E
&
p
U
A’
B’
C’
A
B
C
0’0
I
p
I
p
I
d
Âiãûn thãú âiãøm trung tênh ti âäúi xỉïng ln trng våïi âiãûn thãú âiãøm trung tênh
ngưn. Lục mảch khäng âäúi xỉïng:
0IIII
0CBA
≠=++
&&&&
53
Vấ DU 4.1:
Cho maỷch ba pha õọỳi xổùng nhổ hỗnh VD4.1 coù õióỷn aùp dỏy cuớa nguọửn u
AB
=
2
380sin(t - 60
o
)V, tỏửn sọỳ goùc =100 (rad/s), taới nọỳi hỗnh sao (Y), mọỹt pha coù
R =20,
HL
=
10
1
. Tờnh :
a. ióỷn aùp caùc pha õóứ ồớ daỷng thồỡi gian.
b. Tọứng trồớ phổùc pha cuớa taới.
c. Doỡng õióỷn dỏy vaỡ doỡng õióỷn pha.
Baỡi giaới
a. ióỷn aùp caùc pha:
Tổỡ hỗnh 4.4, ta thỏỳy khi nguọửn ba pha õọỳi xổùng thỗ õióỷn aùp dỏy vổồỹt trổồùc õióỷn
aùp pha tổồng ổùng mọỹt goùc 30
o
, nón ta coù:
AB
=
A
+ 30
o
A
=
AB
- 30
o
= 60
o
- 30
o
= 30
o
Vaỡ trở hióỷu duỷng õióỷn aùp pha:
V
U
U
d
p
220
3
380
3
===
Nhổ vỏỷy õióỷn aùp caùc pha cuớa nguọửn õóứ daỷng phổùc:
VU
o
A
30220=
&
A
B
C
R
L
R
L
R
L
I
d
Hỗnh VD4.1
U
d
VU
o
B
90220 =
&
VU
o
C
210220 =
&
ióỷn aùp caùc pha cuớa nguọửn õóứ daỷng thồỡi gian:
()
Vtsinu
A
0
302220 +=
()
Vtsinu
B
0
902220 =
()
Vtsinu
C
0
2102220 =
b. Tọứng trồớ phổùc pha cuớa taới:
Z
p
= R + jL = 20 + j100.1/10
= 20 + j10 ()
c. Doỡng õióỷn qua taới :
22
3
pp
d
p
p
dp
XR
U
Z
U
II
+
===
A,II
dp
849
10203
380
22
=
+
==
54
4.3. CẠCH NÄÚI HÇNH TAM GIẠC (Δ)
Näúi hçnh tam giạc ca ngưn hồûc phủ ti l näúi âiãøm âáưu ca pha náưy våïi
âiãøm cúi ca pha kia. Vê dủ A näúi våïi Z, B näúi våïi X, C näúi våïi Y (hçnh 4.6).
Xẹt quan hãû
: ;
trong mảch ba pha âäúi xỉïng:
p
U v
d
U
p
Iv
d
I
+ Quan hãû :
pd
U vU
Hçnh 4.6
Mảch ba pha ba ngưn v ti näúi tam
g
iạc
Z
AB
Z
BC
Z
CA
A
I
&
B
I
&
C
I
&
A
E
&
B
E
&
C
E
&
d
U
A’
B’
C’
A
B
C
U
p
I
d
AB
I
&
BC
I
&
CA
I
&
Ta cọ: (4.7)
p
U =
d
U
A
B
BC
I
&
A
I
&
AB
I
&
CA
I
&
30
o
0
CA
I
&
−
Hçnh 4.7
Âäư thë vectå ti näúi tam giạc
+ Quan hãû :
p
I v
d
I
Ta cọ: (4.8a)
CAABA
III
&&&
−=
(4.8b)
ABBCB
III
&&&
−=
(4.8c)
BCCAC
III
&&&
−=
Xẹt Δ 0AB, ta cọ:
o
30OA2OB cos
=
OA3OB
=
Ta tháúy: Âäü di OB = I
d
; âäü di OA = I
p
, nãn:
pd
I3I
=
(4.9)
Khi näúi hçnh tam giạc ngưn v phủ ti ba pha âäúi xỉïng thë hãû thäúng dng
âiãûn, âiãûn ạp dáy v pha cng âäúi xỉïng, vãư trë säú thç dng âiãûn dáy låïn hån
3
dng âiãûn pha.
4.4. CÄNG SÚT CA MẢCH BA PHA
4.4.1. Cäng sút tạc dủng mảch ba pha
Cäng sút tạc dủng ca mảch ba pha bàòng täøng cäng sút tạc dủng ca cạc pha.
Gi tỉång ỉïng l cäng sút tạc dủng ca cạc pha A, B, C. Ta cọ:
CBA
PPP ,,
55
CBA
PPPP ++=
(4.10)
CCCBBBAAA
IUIUIUP ϕ+ϕ+ϕ= coscoscos
Trong âọ :
CBACBACBA
IIIUUU ϕϕϕ ,,;,,;,,
tỉång ỉïng l âiãûn ạp pha, dng
âiãûn pha v gọc lãûch pha ca chụng.
Khi mảch ba pha âäúi xỉïng thç
;
pCBA
UUUU ===
;
pCBA
IIII ===
ϕ=ϕ=ϕ=ϕ
CBA
, ta cọ:
ϕ= cos
pp
IU3P
(4.11a)
hồûc (4.11b)
2
pp
IR3P =
trong âọ : R
p
: l âiãûn tråí pha.
Trỉåìng håüp mảch ba pha âäúi xỉïng :
+ Näúi hçnh sao: ;
dp
II =
3
U
U
d
p
=
.
+ Näúi tam giạc :
3
I
I
d
p
=
;
dp
UU =
.
Cäng sút tạc dủng mảch ba pha viãút theo âải lỉåüng dáy, ạp dủng cho c
trỉåìng håüp mảch ba pha näúi sao v tam giạc âäúi xỉïng:
ϕ= cos
dd
IU3P
(4.12)
4.4.2. Cäng sút phn khạng
Tỉång tỉû cäng sút tạc dủng, ta cọ cäng sút phn khạng ba pha :
CBA
QQQQ ++=
(4.13)
CCCBBBAAA
IUIUIUQ ϕ+ϕ+ϕ= sinsinsin
Khi mảch ba pha âäúi xỉïng thç ta cọ:
ϕ=
sin
pp
IU3Q
(4.14a)
hồûc (4.14b)
2
pp
IX3Q =
trong âọ : X
p
l âiãûn khạng pha.
hồûc
ϕ= sin
dd
IU3Q
(4.15)
4.4.3. Cäng sút biãøu kiãún
Cäng sút biãøu kiãún ca mảch ba pha âäúi xỉïng:
ddpp
IU3IU3S ==
(4.16)
4.4.4. Cäng sút viãút åí dảng phỉïc
Gi l cäng sút pha A, B, C viãút åí dảng säú phỉïc v
CBA
SSS
~
,
~
,
~
A
*
I
&
, ,
l säú phỉïc liãn hiãûp ca dng âiãûn pha , , , ta cọ :
B
*
I
&
C
*
I
&
A
I
&
B
I
&
C
I
&
56
(4.17a)
AA
*
AAA
jQPIUS
~
+==
&&
BB
*
BBB
jQPIUS
~
+==
&&
(4.17b)
(4.17c)
CC
*
CCC
jQPIUS
~
+==
&&
4.5. ÂO CÄNG SÚT TẠC DỦNG MẢCH BA PHA
4.5.1. Âo cäng sút mảch ba pha âäúi xỉïng cọ dáy trung tênh
W
A
P
A
*
C
B
*
0
Hçnh 4.8 Âo cäng sút mảch ba pha
dng mäüt oạt mẹt
Ti
ba
pha
âäúi
xỉïng
Nhỉ â biãút, mảch ba pha âäúi
xỉïng thç dng âiãûn âiãûn ạp cạc pha
âãưu bàòng nhau. Vç váûy âãø âo cäng
sút mảch ba pha âäúi xỉïng cọ dáy
trung tênh ta chè cáưn âo trãn mäüt pha
räưi nhán ba. Hçnh 4.8 l så âäư näúi
dáy âo cäng cäng sút tạc dủng trãn
mäüt pha.
P =3P
A
(4.18)
4.5.2. Âo cäng sút mảch ba pha khäng âäúi xỉïng cọ dáy trung tênh
Mún âo cäng sút mảch ba pha khäng âäúi xỉïng cọ dáy trung tênh, vãư ngun
tàõc cọ thãø âo cäng sút ca tỉìng pha räưi cäüng lải. Så âäư näúi dáy âo cäng sút tỉìng
pha v trãn hçnh 4.9.
W
A
P
A
*
C
B
*
W
P
B
*
*
P
C
*
*
Z
A
Z
B
Z
C
0
W
Hçnh 4.9
Âo cäng sút mảch ba pha dng ba oạt mẹt
Nhỉ váûy cäng sút ba pha :
P = P
A
+ P
B
+ P
C
(4.19)
4.5.3. Âo cäng sút mảch ba pha khäng âäúi xỉïng
Trỉåìng håüp mảch ba pha khäng âäúi xỉïng cọ dáy trung tênh, âãø âo cäng sút ba
pha ta âo cäng sút tỉìng pha räưi cäüng lải. Âäúi våïi mảch ba pha khäng âäúi xỉïng
hay âäúi xỉïng ta cọ thãø dng 2 oạtmẹt âãø âo theo så âäư näúi dáy hçnh 4.10.
57
Ti
näúi
Y
hay
Δ
Tháût váûy, ta tháúy hãû thäúng âiãûn ạp bàòng hai ngưn sââ tỉång âỉång
Ε
&
1
=
U
&
AC
,
Ε
&
2
=
U
&
BC
nhỉ hçnh 4.10.
Cạc ngưn tỉång âỉång ny s phạt ra cäng sút bàòng cäng sút tiãu thủ trãn
ti. Vç váûy cäng sút trãn ti s bàòng:
P
ti
= P
E1
+ P
E2
= Re
{ }
*
AAC
IU
&&
+ Re
{ }
*
BBC
IU
&&
= P
1
+ P
2
(4.20)
4.6. CẠCH GII MẢCH BA PHA ÂÄÚI XỈÏNG
Âäúi våïi mảch ba pha âäúi xỉïng thç dng âiãûn, âiãûn ạp pha v dáy cng âäúi
xỉïng, nghéa l chụng cọ trë säú bàòng nhau v lãûch pha nhau 120
0
. Vç váûy khi gii
mảch ba pha âäúi xỉïng ta tạch mäüt pha âãø tênh, räưi suy ra cho hai pha kia.
4.6.1. Cạch gii mảch ba pha âäúi xỉïng näúi sao
1. Khi khäng xẹt täøng tråí âỉåìng dáy pha (hçnh 4.11).
Âiãûn ạp âàût lãn mäùi pha ca ti:
3
U
U
d
p
=
(4.21)
våïi U
d
- âiãûn ạp dáy ca mảch ba pha.
Täøng tråí pha ca ti:
22
ppp
XRZ +=
(4.22)
pp
XR
,
- âiãûn tråí, âiãûn khạng mäùi pha ca ti.
Dng âiãûn pha (bàòng dng dáy) ca ti:
22
3
pp
d
p
p
dp
XR
U
Z
U
II
+
===
(4.23)
Gọc lãûch pha giỉỵa âiãûn ạp pha v dng âiãûn pha:
p
p
R
X
arctg=ϕ
(4.24)
W
W
AP
1
C
B
2
*
*
*
P
*
Ε
&
1
+
_
Ε
&
2
_
+
Hçnh 4.10 Âo cäng sút ba pha dng hai oạt mẹt