Myers
Chem 115
The Nozaki-Hiyama-Kishi Reaction, Asymmetric Additions to Carbonyl Compounds
Recent Reviews:
• super-stoichiometric amounts of CrII reagents are generally employed.
Lumbroso, A.; Cooke, M. L.; Breit, B. Angew. Chem. Int. Ed. 2013, 52, 1890–1932.
• aldehydes react markedly faster and with complete selectivity in the presence of ketones.
Hargaden, G. C.; Guiry, P. J. Adv. Synth. Catal. 2007, 349, 2407–2424.
• because of the low basicity of organochromium reagents, the reaction is compatible with an
array of functional groups.
Fürstner, A. Chem. Rev. 1999, 99, 991–1045.
• Coupling of an alkenyl halide or triflate wtih an aldehyde mediated by Cr(II) was first reported
in 1977 and was found later to be initiated by a catalytic amount of NiCl2.
• Examples:
O
MPMO
H3C
H3C
Generalized Reaction Scheme:
O
R' X
H
R
Typically:
+
CrII,
OH
NiII
R
H
O
H
MOMO
R'
CH3
OCH3
O
TfO H
H3C
Mechanism:
OBn
CH3
CrCl2 (90 mol%)
NiCl2 (10 mol%)
O
H
O
CrII, NiII
+
I
C4H9
Ph
I
Ni0
H3C
NiI
H3C
C4H9
O
OTBS
Ph
+
H
C4H9
transmetalation
H
O
O
H
SEMO
CH3
CH3
H
O
O
H
CH3
O
H3C
CH
CH3 3
H3C
Ph
H3C
Ph
C4H9
CH3
CH3
CH3
O
CH3
Br
O
O
BnO
OH
work-up
O
1% NiCl2/CrCl2
(14 equiv)
DMF, 64%
dr ~ 3 : 1
O
O
OCrIIICl2
C4H9
O
OTBS
O
CrIICl2
O
O
H
O
O
H
THF, DMF, 23 ºC
CH3
CH3
O
H3C
OBn
CH3
CH3
CH3
CH3
O
BnO
O
I NiII
Cl2CrIII
OMOM
Product was not formed in the absence of 4-t-butylpyridine.
Stamos, D. P.; Sheng, X. C.; Chen, S. S.; Kishi, Y. Tetrahedron Lett. 1997, 38, 6355–6358.
C4H9
oxidative
addition
CrIICl2
I
O
OH
C4H9
CrIIICl2I
OCH3
O
HO
4-t-butylpyridine
CH3
CH3
• A specific example:
H
O
•
H
• metal = Cr, Ni (sometimes Co)
• X = Cl, Br, I, OSO2CF3, phosphonate
O
H3C
DMSO, 23 ºC
92%
single diastereomer
CH3
Takao, K.; Hayakawa, N.; Yamada, R.; Yamaguchi, T.; Morita, U.; Kawasaki, S.; Tadano, K. Angew.
Chem. Int. Ed. 2008, 47, 3426–3429.
• R' = allyl, aryl, alkenyl, alkynyl, propargyl
Ph
I
O
•
OH
MPMO
H3C
NiCl2 (6 mol%)
CrCl2 (7.6 equiv)
OTBS
H
OTBS
O
O
H
SEMO
H
H3C
O
HO
H
O
O
Huckins, J. R.; de Vincente, J.; Rychnovsky, S. D. Org. Lett. 2007, 9, 4757–4760.
O
CH3
CH3
CH
CH3 3
Fan Liu
1
Myers
• Synthesis of a palytoxin intermediate:
O
Chem 115
The Nozaki-Hiyama-Kishi Reaction, Asymmetric Additions to Carbonyl Compounds
CH3
PMBO
OPMB
OTBS
CH3
+
I
H3CO
Catalytic in Chrominium: Addition of super stoichiometric amounts of the non-toxic metal
manganese allows the reaction to proceed with catalytic amounts of Cr.
H
CH3
CH3
H3C
OPMB
OPMB
O
O
O
H
PMBO
OPMB
1/2 Mn(0)
OPMB
BzO
BzO
OTMS
C4H9
Ph
OPMB
OPMB
CH3
OCH3
O
OH
CH3
0.11% NiCl2/CrCl2
(~30 equiv)
DMSO, THF, 82%
dr ~ 3.6 : 1
• TMSCl + Mn(0): TMSCl serves to liberate CrIII from the product chromium alkoxide. Mn(0)
reduces CrIII to the catalytically active CrII species:
1/2 Mn(II)
CrIIICl3
CrIICl2
Ph
OBz
C4H9
I NiI
TMS-Cl
OH
OBz
I NiII
OCrIIICl2
C4H9
Cl2CrIII
C4H9
O
Ph
H
• Example:
O
CH3
PMBO
OTBS
CH3 OPMB
OPMB
OPMB
O
H3CO
CH3
H3C
CH3
O
OH
H
PMBO
OPMB
OPMB
OPMB
OPMB
CH3
OCH3
O
OH
CH3
O
BzO
BzO
OH
OBz
OBz
H3C
OTf
O
+ H
O
CrCl2 (15 mol%)
(doped with cat. NiCl2)
Mn (1.7 equiv)
OH
O
H3C
TMSCl (2.4 equiv)
DMF:DME, 50 ºC
80%
O
Fürstner, A.; Shi, N. J. Am. Chem. Soc. 1996, 118, 12349–12357.
• Zr(Cp)2Cl2 + Mn(0): use of Zr(Cp)2Cl2 in lieu of TMSCl suppresses formation of TMS enol ethers of
aldehydes and increases the reaction rate.
• Example:
Armstrong, R. W.; Beau, J.-M.; Cheon, S. H.; Christ, W. J.; Fujioka, H.; Ham, W.-H.; Hawkins, L. D.;
Jin, H.; Kang, S. H.; Kishi, Y.; Martinelli, M. J.; McWhorter, W. W.; Mizuno, M.; Nakata, M.; Stutz, A.
E.; Talamas, F. X.; Taniguchi, M.; Tino, J. A.; Ueda, K.; Uenishi, J.; White, J. B.; Yonaga, M. J. Am.
Chem. Soc. 1989, 111, 7525–7530.
H3C
I
CrCl2 (15 mol%)
NiCl2(dppp) (2 mol%)
Zr(Cp)2Cl2 (1 equiv)
O
+
H
Ph
Mn (2 equiv)
LiCl, MeCN
23 ºC, 71%
OH
H3C
Ph
Namba, K.; Kishi, Y. Org. Lett. 2004, 6, 5031–5033.
Fan Liu
2
Myers
The Nozaki-Hiyama-Kishi Reaction, Asymmetric Additions to Carbonyl Compounds
Ligand Additives: Addition of supporting ligands often accelerates the reaction. Use of chiral ligands
affords enantiomerically enriched secondary alcohol products.
O
N
H
O
N
N
O
t-Bu
3
1 R = i-Pr
2 R = t-Bu
N
Ph
Ph
A
Cl
H
CH3 OH
n-C5H11
n-Bu
B
n-Bu
Ph
Ph
t-Bu
H
t-Bu
O
Br
C
H
+
H
Ph
2 (10)
23
84
71
1 (10)
23
83
96
3 (10)
23
90
92
3 (5)
23
–
93
4 (3)
23
90
98
4 (3)
23
71
94
17
94
OH
Ph
O
93
OH
• Ligands on Ni, although not believed to be involved in the enantio-determining C–C bond-forming
step, can have a dramatic influence on the enantioselectivity due to ligand scrambling:
I
89
OH
I
n-Bu
4
H3C
0
OH
B
O
Cr-4 (10 mol%)
Ni catalyst I (2 mol%)
Zr(Cp)2Cl2 (1 equiv)
1 (10)
n-C5H11
O
I
n-Bu
H
O
Cl Cr
O
N
ee
(%)
O
S
N
yield
(%)
OH
A
O
CH3
S
N
O
temp
(ºC)
Ph
O
H
R
R
Ph
Br
NH
O S O
ligand
(mol%)
OH
A
H
OCH3
N
product
method
O
Br
OCH3
OCH3
Ph
Ph
aldehyde
nucleophile
Chem 115
O
H3C
Br
OH
H3C
90%, 92% ee
H
Ph
CH3
OH
Ph
Ph
Mn (2 equiv)
LiCl, MeCN, 23 ºC
C
CH3
Method A1: CrCl2 (10 mol%), Mn (2 equiv), DIPEA (30 mol%), TMSCl (2 equiv), THF; TBAF, THF
N
H3C
N
• NiCl2
I
(NiCl2•DMP)
Namba, K.; Cui, S.; Wang, J.; Kishi, Y. Org. Lett. 2005, 7, 5417–5419.
Liu, X.; Li, X.; Chen, Y.; Hu, Y.; Kishi, Y. J. Am. Chem. Soc. 2012, 134, 6136–6139.
Method B2: NiCl2•DMP (2 mol%), CrCl2 (10 mol%), Proton Sponge (11 mol%), LiCl (2 equiv), Mn (2
equiv), ZrCp2Cl2 (1 equiv), MeCN
CH3
Method C3: Mn (3 equiv), TESCl (1.1 equiv), DME:MeCN; TBAF, THF.
1Inoue,
M.; Suzuki, T.; Nakada, M. J. Am. Chem. Soc. 2003, 125, 1140–1141.; Inoue, M.; Nakada, M.
Org. Lett. 2004, 6, 2977–2980.
2Namba, K.; Cui, S.; Wang, J.; Kishi, Y. Org. Lett. 2005, 7, 5417–5419.
3Xia, G.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 2554–2555.
Fan Liu
3
Myers
The Nozaki-Hiyama-Kishi Reaction, Asymmetric Additions to Carbonyl Compounds
• Ligand 8 contains binding sites for both Ni and Cr and dramatically lowers the catalyst loading
required for asymmetric addition.
Cr-8 (1 mol%)
• catalysts can override inherent selectivities of the substrate:
+
O
I
OBz
Cr-Ligand (20 mol%)
NiCl2 (2 mol%)
LiCl (2 equiv)
Mn (2 equiv)
OBz
Cl
OTBDPS
H
R OH
3,3'-dimethyl2,2'-dipyridine
(S)-5
(R)-5
(S)-6
(R)-6
(S)-7
(R)-7
I
H3C
Cl
NiCl2 (1 mol%)
Zr(Cp)2Cl2 (1.2 equiv)
Mn (2 equiv)
O
+
Ph
H
OTBDPS
Zr(Cp)2Cl2 (1 equiv)
MeCN, 23 ºC
Ligands
O
dr (S : R)
H3C
1 : 8.0
8.1 : 1
N
8
CH3
CH3
Liu, X.; Henderson, J.; Sasaki, T.; Kishi, Y. J.
Am. Chem. Soc. 2009, 131, 16678–16680.
Peng, J.; Kishi, Y. Org. Lett. 2012, 14, 86–89.
Cl
16 : 1
• Ligands for the enantioselective allylation and propargylation of ketones have been developed:
1 : 21
24 : 1
CrCl3 (10 mol%)
Ligand (10 mol%)
O
+
R'
CH3
nucleophile
O
N
OCH3
N
N
i-Pr
NH
O S O
CH3
m-CF3Ph
N
i-Pr
NH
O S O
CH3
t-Bu
temp
(ºC)
yield
(%)
ee
(%)
9
0
63
91
R
CH3
i-Pr
O
0
69
88 (anti)
70 (syn)
O
N
H
N
9
Ph
Boc
Bn
CH3
NH
O S O
Cl
HO CH3
N
O
Cl
O
N
O
10a
25
70
70
H3CO
n-Bu
HO CH3
H
9
N
S
N
Cl
ligand
R'
OCH3
N
O
Et3N, TMSCl
Mn (2 equiv), THF
OH
HO CH3
Br
O
HO CH3
Br
H3C
CH3
product
nucleophile
5
3,3'-dimethyl-2,2'-dipyridine
O
Ph
N
NH
O S O
Cl
1 : 15
OH
H3C
LiCl, MeCN, 23 ºC
>90%, 82% ee
O
N
1.2 : 1
R X
H3C
H3C
Chem 115
10a
25
86
N
H
Boc
H
N
96
t-Bu
10
Cl
7
S
6
Guo, H.; Dong, C.-G.; Kim, D.-S.; Urabe, D.; Wang, J.; Kim, J. T.; Liu, X.; Sasaki, T.; Kishi, Y. J.
Am. Chem. Soc. 2009, 131, 15387–15393.
Cl
HO CH3
10a
25
75
92
a1
equiv of LiCl was added.
Ph
Miller, J.; Sigman, M. S. J. Am. Chem. Soc. 2007, 129, 2752–2753.
Harper, K. C.; Sigman, M. S. Science 2011, 333, 1875–1878.
Fan Liu
4
Myers
TBSO
H3C
• Examples in synthesis:
• A one-pot NHK-Peterson elimination strategy was used for the large-scale synthesis of the
anticancer marine natural product discodermolide:
CH3 CH3 CH3
CH3
CHO
OTBS OPMB
CH3
H3C
OTBS
OTES
TBSO
OPiv
CH3
H
THF, 0–15 ºC
R
PMBO
OTBS
CH3
CH3 CH3 TMS
TBSO
H3C
OH
+
CH3
OTBS OPMB
CH3
H3C
OTBS
6 M KOH
PMBO
CH3OH, 23 ºC
81% (2 steps)
OBn
CH3
CH3 100%, dr = 4 : 1
O
H
H
Cr-11 (20 mol%)
NiCl2(P(CH3))2
(4 mol%)
O
ZrCp2Cl2, Mn
LiCl, MeCN, 23 ºC
OBn
OBn
dr = 30 : 1
yield not reported
TBSO
H3C
CH3 CH3
93%, dr = 18 : 1
6 steps
O
OH
H
OBn
OBn
O
OCH3
N
i-Pr
O
Liu, X.; Li, X.; Chen, Y.; Hu, Y.; Kishi Y. J. Am. Chem. Soc. 2012, 134, 6136–6139.
O
O
CH3
CH3
H3CO DMBOMO
CH3 OH
OAc
I
H3CO
CH3
H
OTr
CH3
O
CH3 CH3
OCH3
OCH3
O
O
O
CH3
H3CO DMBOMO
OTr
CH3
CH3 CH3
OCH3
N
OAc
H3CO
CH3
S
OMTM
76%, dr = 2 : 1
N
N
TBSO
H3C
OMTM
CH3 CH3
2,4,6-Cl3C6H4COCl
Et3N, DMAP, THF, quan.
CH3
TBSO
H3C
O
CH3
OTBS
ent-12 (10 equiv)
CH3CN
OAc
OTr
+
H3CO
OTBS
NH
O S O
HO H3CO DMBOMO
I
CH3
CrCl2 (10 equiv)
NiCl2(dppp) (4 mol%)
proton sponge
OBn
O
OH
CH3
S
OTBS
OMTM
OBn
BnO
O
+
I
OH OAc
OTr
8 steps
H3C
H3C
OBn
O
OCH3
(1.27 kg)
BnO
O
O
CH3 CH3
OTBS
OH
Mickel, S. J.; Sedelmeier, G. H.; Niederer, D.; Schuerch, F.; Seger, M.; Schreiner, K.; Daeffler, R.;
Osmani, A.; Bixel, D.; Loiseleur, O.; Cercus, J.; Stettler, H.; Schaer, K.; Gamboni, R.; Bach, A.;
Chen, G.-P.; Chen, W.; Geng, P.; Lee, G. T.; Loeser, E.; McKenna, J.; Kinder, F. R., Jr.;
Konigsberger, K.; Prasad, K.; Ramsey, T. M.; Reel, N.; Repic, O.; Rogers, L.; Shieh, W.-C.; Wang,
R.-M.; Waykole, L.; Xue, S.; Florence, G.; Paterson, I. Org. Process Res. Dev. 2004, 8, 113–121.
H3C
H3C
OTr
TBSO
CH3
HO
R
OAc
H
TBSO
OPiv
CH3 CH3 TMS
PMBO
O
OTES
CH3
CH3 CH3 CH3
+
CrCl2 (10 equiv)
NiCl2(dppp) (1 mol%)
proton sponge
12 (10 equiv)
CH3CN
CH3
I
(1.52 kg)
I
TBSO
+
O
TMS
CrCl2 (4.3 equiv)
OCH3
CH3
Br
PMBO
Chem 115
The Nozaki-Hiyama-Kishi Reaction, Asymmetric Additions to Carbonyl Compounds
t-Bu
NH
O S O
CH3
12
11
Kobayashi, K.; Fujii, Y.; Hayakawa, I.; Kigoshi, H. Org. Lett. 2011, 13, 900–903.
Kobayashi, K.; Fujii, Y.; Hirayama, Y.; Kobayashi, S.; Hayakawa, I.; Kigoshi, H. Org. Lett. 2012, 14,
Fan Liu
1290–1293.
5
Myers
Chem 115
The Nozaki-Hiyama-Kishi Reaction, Asymmetric Additions to Carbonyl Compounds
• Application to the synthesis of the anticancer drug Halaven!:
TBSO
O
OCH3
N
CH3
CrCl2, NiCl2
Et3N, 13
CH3
O
Br
OH
OTs
KHMDS, THF
TBSO
TBSO
O
HO
MsO
H3CO
+
O
OPiv
(1.48 kg)
OPiv
SO2Ph
O
H
TBSO
TBSO
CH3
O
H
•
CH3
n-BuLi
THF-heptane
<–50 ºC
75–95%
O
H
OH
•
O
•
O
H
OTBS
OTBS
O
CH3
OPiv
OTBS
4 steps
O
O
H
I
H
H
OTBS
H3CO
I
H
OTBS
OTBS
CH3O2C
H
OPiv
SO2Ph
O
O
H
O
•
(1.2 kg)
TBSO
TBSO
NH
O S O
CH3
13
O
(1.17 kg)
SO2Ph
O
H3CO
H3CO
CH3
O
TBSO
TBSO
OTBDPS
TfO
MsO
THF, 25 ºC
O
CH3
N
6 steps
CrCl2 (4.7 equiv)
NiCl2 (12 mol%)
Et3N, ent-13 (4.7 equiv)
SO2Ph
O
i-Pr
O
OTBDPS
H3CO
toluene, –20 ºC
65% (2 steps)
dr = 20 : 1
OCH3
N
CH3
O
CH3
i-PrOH, 25 ºC
60% (2 steps)
dr = 8 : 1
OTs
OTBDPS
TBSO
SiO2
CH3
THF, 25 ºC
+
H
TBSO
OCH3
N
CH3
O
2 steps
O
•
O
•
O
O
TMS
H
OH
H
DMSO, CH3CN
30 ºC, 45%
dr = 10 : 1
O
I
H
OTBS
H
O
(929 g)
1. CrCl2 (10 equiv)
NiCl2 (1 equiv)
O
O
Et3N, ent-13 (10 equiv) TBSO
MeCN, THF, 25 ºC
TBSO
H3C
2. DMP, CH2Cl2
60–80% (2 steps)
O
H
O
H
H
H
O
H
H
OTBS
OTBS
CH3
O
O
CH3O2C
H3CO
O
O
TBSO
TBSO
H
TMS
Br
CrCl2, NiCl2
O
O
O
H
H
O
OTBS
OTBS
O
OTBS
H
O
O
(580 g)
Synlett 2013, 24, 323–326.; Synlett 2013, 24, 327–332.; Synlett 2013, 24, 333–337.
Fan Liu
6