Tải bản đầy đủ (.docx) (2 trang)

Tuan 20 t36

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (104.33 KB, 2 trang )

Tuần: 20
Tiết: 36

Ngày soạn: 10 / 01 / 2018
Ngày dạy: 12 / 01 / 2018

ÔN TẬP CHƯƠNG II

I. Mục Tiêu:
1. Kiến thức: - Hệ thống hóa kiến thức chương II
2. Kỹ năng: - Có kĩ năng vận dụng thành thạo trong giải tốn diện tích
3. Thái độ: - Rèn tính cẩn thận, chính xác
II. Chuẩn bị:
- GV: SGK, thước thẳng, phấn màu.
- HS: SGK, chuẩn bị các bài tập về nhà.
III . Phương Pháp Dạy Học:
- Vấn đáp tái hiện, nhóm.
IV. Tiến Trình Bài Dạy:
1. Ổn định lớp:(1’) 8A1……………………………………………………………
2. Kiểm tra bài cũ: (7’) Gv cho học sinh trả lời câu hỏi sgk.
3. Nội dung bài mới:
HOẠT ĐỘNG CỦA GIÁO VIÊN VÀ HỌC SINH
GHI BẢNG
Hoạt động 1: (12’)
Bài 1: Tìm x để SABCD 3SADE
- GV: Giới thiệu bài toán.
- HS: Chú ý theo dõi và đọc
hình trong SGK.
- GV: Hướng dẫn: viết cơng - HS: Thực hiện theo sự
thức tính diện tích hình chữ hướng dẫn của GV.
nhật và tính diện tích ADE.


Thiết lập đẳng thức SABCD 3SADE
rồi từ đó tìm được x.

1
SABCD 3SADE  x.BC 3. .EH.AD
2
Ta có:
3
 5x  .2.5  5x 15  x 3cm
2

Hoạt động 2: (11’)
Bài 2:
- GV: Hướng dẫn HS giải bài - HS: Lên bảng trình bày
tập này dựa vào tính chất theo sự hướng dẫn của GV.
đường trung tuyến chia tam
giác làm hai phần có diện tích
bằng nhau.
Giải:
M là trung điểm đường trung tuyến BD
thì ta có đẳng thức: SAMB  SBMC SMAC
Thật vậy: vì đường trung tuyến chia tam
giác làm hai phần có diện tích bằng
nhau:
SAMB  SBMC SAMD  SDMC SMAC

HOẠT ĐỘNG CỦA GIÁO VIÊN VÀ HỌC SINH
Hoạt động 3: (12’)
- GV: giới thiệu bài toán.
- HS: chú ý theo dõi.


GHI BẢNG
Bài 3:


- GV: EHG là tam giác gì?
Vì sao?

- HS: Tam giác đều.
- HS: EHG cân tại H và có
µ 600
H

- GV: Như vậy, EG = ?
- HS: EG = 6cm
- GV: Hãy áp dụng định lý - HS: áp dụng và tính
Pitago để tính đoạn OH, từ đó
suy ra đoạn HF.
- GV: Có độ dài hai đường - HS: thực hiện .
chéo, GV u cầu HS tính
diện tích hình thoi.

µ

0

Ta có EHG cân tại H và có H 60 Nên
EHG là tam giác đều
Do đó: EG = EH = 6cm  OE = 3cm
Áp dụng định lý Pitago cho EHO ta có:

HO2 = EH2 – OE2
HO2 = 62 – 32
HO2 = 27
HO =

27  HF 2 27

1
1
SEFGH  EG.HF  .6.2 27 6 27 (cm 2 )
2
2
Vậy:

4. Củng Cố:
- Xen vào lúc làm bài tập.
5 Hướng Dẫn Và Dặn Dò Về nhà: (2’)
- Về nhà xem lại các bài tập đã giải.
- Làm bài tập còn lại
6. Rút Kinh Nghiệm Tiết Dạy:
…………………………………………………………………………………………………………
…………………………………………………………………………………………………………
…………………………………………………………………………………………………………
…………………………………………………………………………………………………………



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×