Tải bản đầy đủ (.pdf) (72 trang)

Ứng dụng thuyết VB, trường tinh thể giải thích một số phức chất

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (3.12 MB, 72 trang )

TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2
KHOA HĨA HỌC
=====***=====

HỒNG THỊ DƯƠNG

ỨNG DỤNG THUYẾT VB,
TRƯỜNG TINH THỂ GIẢI THÍCH
MỘT SỐ PHỨC CHẤT
KHĨA LUẬN TỐT NGHIỆP ĐẠI HỌC
Chun ngành: Hóa vơ cơ

Người hướng dẫn khoa học:
ThS. Hoàng Quang Bắc

HÀ NỘI, 2015


LỜI CẢM ƠN
Sau một thời gian cố gắng tìm tòi, nghiên cứu, khoá luận tốt nghiệp với
đề tài:
“Ứng dụng thuyết VB, trường tinh thể giải thích một số phức chất”
đã được hoàn thành.
Em xin bày tỏ lòng biết ơn sâu sắc tới ThS. Hoàng Quang Bắc người đã
luôn quan tâm, động viên và tận tình hướng dẫn em trong quá trình thực hiện
khoá luận này.
Em xin chân thành cảm ơn các thầy cô giáo trong khoa hoá học của
trường Đại Học Sư Phạm Hà Nội 2 đã giúp đỡ và tạo điều kiện thuận lợi cho
em trong suốt quá trình học tập và nghiên cứu.
Nhân dịp này em xin bày tỏ lòng biết ơn sâu sắc tới gia đình bạn bè đã
luôn ở bên giúp đỡ động viên em trong suốt quá trình học tập vừa qua. Mặc


dù đã hết sức cố gắng trong công việc hoàn thành khoá luận nhưng không thể
tránh khỏi những thiếu xót. Vì vậy, em rất mong nhận được những ý kiến
đóng góp của các thầy cô và bạn bè!
Em xin chân thành cảm ơn!
Hà Nội, ngày tháng 5 năm 2015
Sinh viên
Hoàng Thị Dương


DANH MỤC VIẾT TẮT

AO

: orbitan

NL

: năng lượng

NLOĐTTT : năng lượng ổn định trường tinh thể
KL

: kim loại

TH

: trường hợp

T


: tetraedre (tứ diện)

CSFE

: Năng lượng bền hoá trường tinh thể


DANH MỤC BẢNG HÌNH
BẢNG
Bảng 1.1. Tên của các phối tử ........................................................................... 5
Bảng 1.2.Thông số tách năng lượng trong trường tinh thể ............................. 13
Bảng 1.3. Bước sóng của ánh sáng trông thấy và màu ................................... 14
Bảng 2.1. Một số dạng lai hoá ........................................................................ 17
HÌNH
Hình 1.1. Đồng phân cis-điclorođiammin Platin (II) và đồng phân
trans -điclorođiammin Platin (II) ...................................................... 6
Hình 1.2. Đồng phân cis-điclorotetraammin coban (III) và đồng phân
trans-điclorotetraammincoban (III) .................................................. 7
Hình 1.3. Giản đồ tách năng lượng của phức bát diện .................................... 11
Hình 1.4. Giản đồ tách năng lượng của phức tứ diện ..................................... 12
Hình 2.1. Dạng hình học của ion phức [CoF6]3- ............................................. 20
Hình 2.2. Dạng hình học của ion phức [Co(CN)6]3- ....................................... 22
Hình 2.3. Cấu tạo vuông phẳng của phức chất [NiSe4]2- ................................ 28
Hình 2.4. Cấu tạo vuông phẳng của phức chất trans-[PtCl2(NH3)2(H2O)2]2+ . 29
Hình 2.5. Cấu tạo của phức chất trans-[PtCl2(NH3)2(H2O)2]2+ ....................... 29
Hình 2.6. Cấu tạo của phức Fe(CO)5 .............................................................. 33
Hình 2.7. Cấu tạo của phức [Co2(CO)8] .......................................................... 33
Hình 2.8. Cấu tạo của phức Ni(CO)4 .............................................................. 34
Hình 3.1. Sự biến đối orbitan trong phức bát diện ....................................... 37
Hình 3.2. Sự tách mức năng lượng các orbital d trong phức bát diện ........... 37

Hình 3.3. Sự biến đổi năng lượng của các orbital d trong phức tứ diện ............. 38
Hình 3.4.Sự tách năng lượng các orbital d trong phức tứ diện ..................... 39


MỤC LỤC
MỞ ĐẦU .......................................................................................................... 1
CHƯƠNG 1: TỔNG QUAN VỀ PHỨC CHẤT........................................... 3
1.1. Một số khái niệm phức chất [2][6][10] ................................................... 3
1.1.1. Khái niệm .......................................................................................... 3
1.1.2. Cấu tạo phức chất.............................................................................. 3
1.2. Thuyết VB giải thích liên kết phức chất [8] ........................................... 8
1.2.1. Luận điểm ......................................................................................... 8
1.2.2. Nội dung............................................................................................ 9
1.2.3. Ưu nhược điểm của thuyết VB ....................................................... 10
1.3. Thuyết trường tinh thể giải thích phức chất [8] .................................... 10
1.3.1. Luận điểm ....................................................................................... 10
1.3.2. Nợi dung.......................................................................................... 11
1.3.3. Giải thích mợt sớ tính chất của phức: ............................................. 12
1.3.4. Ưu điểm và hạn chế ........................................................................ 14
CHƯƠNG 2: ỨNG DỤNG THUYẾT VB VÀO GIẢI THÍCH MỘT SỐ
PHỨC CHẤT ................................................................................................. 16
2.1. Nội dung [6] ............................................................................................. 16
2.1.1. Một số trường hợp lai hoá............................................................... 16
2.1.2. Cường độ của phối tử...................................................................... 17
2.2. Giải thích phức chất theo thuyết VB..................................................... 17
2.3. Một số bài tập ứng dụng ....................................................................... 18
CHƯƠNG 3: ỨNG DỤNG THUYẾT TRƯỜNG TINH THỂ GIẢI
THÍCH MỘT SỐ PHỨC CHẤT ................................................................. 36
3.1. Cơ sở thuyết trường tinh thể [8][9] ....................................................... 36
3.2. Thông số tách năng lượng ( ký hiệu:= -10Dq ) .................................. 36

3.3. Các yếu tố ảnh hưởng thông số tách ..................................................... 39


3.4. Ảnh hưởng của trường phới tử đến cấu hình electron d của ion
trung tâm ...................................................................................................... 41
3.5. Năng lượng bền hoá bởi trường tinh thể ............................................. 42
3.6. Bài tập ứng dụng thuyết trường tinh thể giải thích phức chất .......... 43
KẾT LUẬN .................................................................................................... 63
TÀI LIỆU THAM KHẢO ........................................................................... 64


MỞ ĐẦU
1. Lý do chọn đề tài
Phức chất là một bộ phận quan trọng của hoá học vô cơ hiện đại. Thật
vậy, phần lớn các hợp chất vô cơ là những phức chất. Trong các giáo trình
hoá vô cơ thường có phần dành riêng hoặc đề cập đến phức chất, việc giải
thích sự hình thành và tồn tại của nhiều hợp chất vô cơ cũng dựa trên cơ sở
các thuyết liên kết trong phức chất
Phức chất ngày càng có nhiều ứng dụng rộng rãi không chỉ trong hoá
học mà còn cả trong các lĩnh vực sản xuất nông nghiệp, công nghiệp, y học,
đời sống…Vì thế, một trong những hướng nghiên cứu của hoá học vô cơ là
phức chất đã được bắt đầu khá sớm và ngày càng phát triển.
Để có thể làm tốt công tác nghiên cứu ứng dụng vào các lĩnh vực trên,
phải có những kiến thức cơ bản về phức chất.
Từ thực tế nói trên, tôi mạnh dạn chọn đề tài:
“Ứng dụng thuyết VB, trường tinh thể giải thích một số phức chất”
nhằm tạo điều kiện thuận lợi cho các bạn học tập và nghiên cứu .
2. Mục đích, nhiệm vụ của nghiên cứu của đề tài
2.1. Mục đích nghiên cứu
Ứng dụng thuyết VB, trường tinh thể giải thích mợt sớ phức chất.

2.2. Nhiệm vụ nghiên cứu
Tởng quan một số vấn đề về phức chất, thuyết VB và thuyết trường
tinh thể.
Nghiên cứu ứng dụng thuyết VB, trường tinh thể giải thích một số
phức chất.
Nghiên cứu hướng dẫn đưa ra cách giải.

1


3. Giả thuyết khoa học
Việc vận dụng thuyết VB, thuyết trường tinh thể giải thích một số phức
chất rất quan trọng. Để phát triển nâng cao năng lực nhận thức, tư duy, sáng
tạo, độc lập của người học thì phải xây dựng hệ thống câu hỏi và bài tập có
chất lượng cao.
4. Phương pháp nghiên cứu
4.1. Phương pháp đọc sách và tài liệu tham khảo.
4.2. Phương pháp thực nghiệm.
4.3. Phương pháp chuyên gia.

2


CHƯƠNG 1: TỞNG QUAN VỀ PHỨC CHẤT
1.1. Mợt sớ khái niệm phức chất [2][6][10]
1.1.1. Khái niệm
Khái niệm phức ở đây chủ yếu được giới hạn trong những phân tử loại
MLk, trong đó k ion hay phân tử L được gọi là phối tử phân bố một cách
xác định chung quanh nguyên tử hay ion kim loại chuyển tiếp M được gọi là
ion tạo phức, nguyên tử tạo phức hay nói chung là hạt tạo phức.

Ví dụ:
Một số phức chất là chất điện ly, khi phân ly thành ion phức: H 2[SiF6];
H[AuCl4] (axit); [Cu(NH3)4](OH)2 (bazơ); K2[HgI4] (muối).
Ngoài ra còn những phức chất không là chất điện ly, không tồn tại những
ion phức: [Pt(NH3)2Cl2]; [Ni(CO)4].
Phần viết trong ngoặc vuông bao gồm hạt tạo phức và các phối tử gọi là
cầu nội hay còn gọi là cầu phối trí.
1.1.2. Cấu tạo phức chất
1.1.2.1. Nguyên tử trung tâm
Chất tạo phức có thể là ion hay nguyên tử và thường được gọi chung là
nguyên tử trung tâm. Phối tử hay ligand là ion ngược dấu hay phân tử trung
hòa điện được phới trí xung quanh ngun tử trung tâm. Điện tích cầu nợi là
tởng điện tích của các ion ở trong cầu nợi. Những ion nằm ngoài ngược dấu
với cầu nợi tạo nên cầu ngoại.
Ví dụ: Trong phức [Cu(NH3)4](OH)2 cầu nội là [Cu(NH3)4]2+ (gồm ion
Cu2+ và 4 phân tử NH3) và cầu ngoại là 2 ion OH- .
Cầu nợi của phức chất có thể là cation (ví dụ: [Cu(NH3)4] 2+, có thể là
anion (ví dụ:[AuCl4], [SiF6]2-), có thể là phân tử trung hòa điện, khơng phân ly
trong dung dịch (ví dụ: [Ni(CO)4] ).

3


Như vậy hạt tạo phức có thể là ion (Cu2+, Au3+...) hay nguyên tử (Ni, Co...) có
thể là kim loại hay không kim loại (Si).
1.1.2.2. Phối tử
Các phối tử phức thường là các ion F-, Cl-, CN-, ... và các phân tử trung
hòa điện như H2O, NH3, pyridin (C5H5N).
Dựa vào sớ ngun tử mà phới tử có thể phới trí quanh hạt tạo phức,
người ta chia phối tử ra làm phới tử mợt càng (ví dụ F-, OH-, NH3... ) hay phới

tử nhiều càng.
Ví dụ: phới tử 2 càng như phân tử etylendiamin (viết tắt en), ngồi ra cịn
có phới tử 4 càng như EDTA (etylendiamintetra axetat), 6 càng như
trilon B.
1.1.2.3. Số phối trí
Sớ phới tử được phân bớ trực tiếp chung quanh hạt tạo phức được gọi là
số phối trí.
Ví dụ: sớ phới trí của ion Co3+ trong phức [Co(NH3)6]Cl3 bằng 6, của
Cu2+ trong phức [Cu(en)2]2+, [Cu(NH3)4](OH)2 đều bằng 4 vì phới tử mợt càng
tạo nên sớ phới trí bằng 1 và phối tử hai càng tạo nên số phới trí bằng 2.
Đới với mợt sớ hạt tạo phức, sớ phới trí thường có giá trị xác định, ví dụ
đới với Cr3+ và Pt4+ sớ phới trí ln là 6. Trong trường hợp chung, đối với đa
số các hạt tạo phức sớ phới trí có những giá trị khác nhau tùy thuộc vào bản
chất các phối tử và điều kiện hình thành phức chất. Ví dụ ion Ni2+ trong phức
chất có thể có các sớ phới trí 4 và 6.
1.1.2.4. Danh pháp
Tên gọi phức chất bao gồm tên của cation và tên của anion.
Tên gọi của ion phức gồm có: sớ phới tử và tên của phới tử là anion + số
phối tử và tên của phối tử là phân tử trung hòa + tên của nguyên tử trung tâm
và sớ oxi hóa.

4


a, Số phối tử
Phối tử 1 càng dùng tiếp đầu ngữ: đi, tri, tetra, penta, hexa…tương ứng
với 2, 3, 4, 5, 6…
Phối tử nhiều càng dùng tiếp đầu ngữ: bis, tris, tetrakis, pentakis,
hexakis…tương ứng với 2, 3, 4, 5, 6…
b, Tên phối tử

Nếu phối tử là anion: tên anion +”o”
Bảng 1.1. Tên gọi các phối tử
F-

Floro

S2O32-

Tiosunfato

Cl-

Cloro

C2O42-

Oxalato

Br-

Bromo

CO32-

Cacbonato

I-

Iođo


HO-

hiđroxo

NO2-

Nitro

CN-

Xiano

ONO-

Nitrito

SCN-

tioxianato

SO32-

Sunfito

NCS-

isotioxianato

Nếu phối tử là phân tử trung hoà: tên của phân tử đó:
C2H4: etylen;


C5H5N: pyriđin;

CH3NH2: metylamin…

Mợt sớ phân tử trung hồ có tên riêng:
H2O: aqua;

NH3: ammin;

CO: cacbonyl;

NO: nitrozyl

c, Nguyên tử trung tâm và số oxi hóa
Nếu nguyên tử trung tâm ở trong cation phức, người ta lấy tên của
nguyên tử đó kèm theo số La Mã, viết trong dấu ngoặc đơn để chỉ số oxi hóa
khi cần. Ví dụ coban (III), coban (II)...
Nếu ngun tử trung tâm ở trong anion phức, người ta lấy tên của
nguyên tử đó thêm đuôi at và kèm theo số La Mã viết trong dấu ngoặc đơn để
chỉ số oxi hóa, nếu phức chất là axit thì thay đi at bằng ic.

5


d, Ví dụ
Tên gọi mợt sớ phức chất:
Cation [Co(NH3)6]Cl3

Hexaammin Coban (III) clorua


Cation [Cr(H2O)6]Br3

Hexaqua Crom(III) bromua

Cation [Co(NH3)5Cl]Cl2

Cloropentaammin Coban (III) clorua

Cation [Cu(en)2]SO4

Bisetylendiamin đồng (II) sunfat

Anion Na2[Zn(OH)4]

Natri tetrahydroxozincat

Anion K4[Fe(CN)6]

Kali hexa cianoferat (II)

Anion H[AuCl4]

Axit tetracloro auric (III)

1.1.2.5. Đồng phân
Phức chất cũng có những dạng đồng phân giống như hợp chất hữu cơ.
Những kiểu đồng phân chính của phức chất là đờng phân hình học và đờng
phân quang học. Ngồi ra cịn có các kiểu đồng phân khác như đồng phân
phối trí, đồng phân ion hóa và đờng phân liên kết.

a, Đờng phân hình học hay đờng phân cis-trans
Trong phức chất, các phới tử có thể chiếm những vị trí khác nhau đối với
nguyên tử trung tâm. Khi phức chất có các loại phới tử khác nhau, nếu hai
phối tử giống nhau ở về cùng mợt phía đới với ngun tử trung tâm thì phức
chất là đồng phân dạng cis và nếu hai phối tử giống nhau ở về hai phía đối với
nguyên tử trung tâm thì phức chất đờng phân dạng trans.
Ví dụ: Phức chất hình vng [Pt(NH3)2Cl2] có hai đờng phân cis và trans

Hình 1.1. Đồng phân cis-điclorođiammin Platin(II) và đồng phân transđiclorođiammin Platin (II)

6


Ion phức bát diện cũng có đồng phân cis và trans.
Ví dụ : [Co(NH3)4Cl2]+

Hình 1.2. Đờng phân cis-điclorotetraammin coban(III) và đồng phân
trans-điclorotetraammincoban(III)
Chú ý: Phức tứ diện không có đồng phân hình học.
b, Đờng phân quang học hay đờng phân gương
Hiện tượng đồng phân quang học sinh ra khi phân tử hay ion khơng thể
chờng khít lên ảnh của nó ở trong gương. Hai dạng đồng phân quang học
không thể chồng khít lên nhau tương tự vật với ảnh của nó trong gương. Các
đờng phân quang học của mợt chất có tính chất lí hóa giớng nhau trừ phương
làm quay trái hay phải mặt phẳng của ánh sáng phân cực.
Ví dụ:
Cl

Cl
N


Cl

Cl

Co

Co
N

N

H3N

NH3

N
NH3

NH3

c, Đờng phân phới trí

7


Hiện tượng đờng phân phới trí sinh ra do sự phới trí khác nhau của loại
phới tử quanh hai ngun tử trung tâm của phức chất gờm có cả cation phức
và anion phức.
Ví dụ :


[Co(NH3)6][Cr(CN)6] và [Cr(NH3)6][Co(CN)6]
[Cu(NH3)4][PtCl4] và [Pt(NH3)4][CuCl4]

d, Đờng phân ion hóa
Hiện tượng đờng phân ion hóa sinh ra do sự sắp xếp khác nhau của anion
trong cầu nội và cầu ngoại của phức chất.
Ví dụ: [Co(NH3)5Br]SO4 và [Co(NH3)5SO4]Br
e, Đồng phân liên kết
Hiện tượng đồng phân liên kết sinh ra khi phới tử mợt càng có khả năng
phới trí qua hai ngun tử. Ví dụ tùy tḥc vào điều kiện, anion NO2- có thể
phới trí qua ngun tử N ( liên kết M-NO2) hay qua nguyên tử O (liên kết MONO), anion SCN- có thể phới trí qua ngun tử S (liên kết M-SCN) hay qua
nguyên tử N (liên kết M-NCS).
Ví dụ: [Co(NH3)5NO2]Cl2 và [Co(NH3)5ONO]Cl2
Nitropentaammin coban (III) clorua và Nitritopentaammin coban (III) clorua
[Mn(CO)5SCN] và [Mn(CO)5NCS]
Tioxianatopentacacbonyl mangan

Isotioxianatopentacacbonyl mangan

1.2. Thuyết VB giải thích liên kết phức chất [8]
1.2.1. Luận điểm
Coi cấu tạo e của nguyên tử vẫn được bảo toàn khi hình thành phân tử.
Khi 2 AO hoá trị của nguyên tử xen phủ nhau tạo liên kết hoá học thì vùng
xen phủ đó là chung cho cả 2 nguyên tử
Mỗi liên kết hoá học giữa 2 nguyên tử được đảm bảo bởi 2e có spin đối
song, không có sự hình thành liên kết bởi 1e hay từ 3e trở lên

8



Sự xen phủ giữa 2AO có e độc thân của 2 nguyên tử càng mạnh thì liên
kết tạo ra càng bền( nguyên lý xen phủ cực đại) liên kết hoá học được phân bố
theo phương có khả năng lớn nhất về sự xen phủ của 2 AO
1.2.2. Nội dung
Liên kết giữa nguyên tử trung tâm và các phối tử là liên kết cho nhận.
Nguyên tử kim loại phải có obitan trống để tạo liên kết với các obitan
chứa cặp electron tự do của phối tử.
Khi đó các obitan trống của nguyên tử kim loại tạo phức tổ hợp thành
các obitan lai hố với sự định hướng khơng gian xác định ứng với sự hình
thành các liên kết giữa hạt tạo phức và phối tử trong phức chất.
Liên kết phối trí được hình thành do sự xen phủ của các obitan lai hố
cịn trớng của kim loại với cặp electron tự do của phối tử.
Sự xen phủ của các obitan càng lớn, liên kết càng bền.
Sự xen phủ của các obitan càng lớn, liên kết càng bền.
Cấu hình khơng gian của phức chất phụ tḥc vào dạng lai hố.
+ Lai hố sp: cấu hình thẳng (Ag+, Hg2+ )
+ Lai hố sp3: cấu hình tứ diện (Al3+, Zn2+, Co2+, Fe2+, Ti3+...)
+ Lai hố dsp2: cấu hình vng phẳng (Au3+, Pd2+, Cu2+, Ni2+, Pt2+ ...)
+ Lai hố d2sp3: cấu hình bát diện (Cr3+, Pt4+, Co3+, Fe3+, Rh3+ ... )
Các obitan muốn lai hoá được với nhau phải năng lượng gần nhau và
phải có cấu hình hình học và sự định hướng của obitan trong khơng gian.
Các dạng lai hố và sự phân bớ hình học của phới tử trong phức chất xác
định chủ yếu bởi cấu tạo electron của ion trung tâm. Ngoài ra chúng cịn phụ
tḥc vào bản chất của các phới tử. Cùng ion kim loại nhưng với những phối
tử khác nhau chúng có thể tạo ra các phức chất khác nhau với các dạng lai hoá
khác nhau, các phức đó có cấu hình khơng gian và từ tính khác nhau.
VD: [Fe(H2O)6]Cl3 lai hố ngồi sp3d2
K3[Fe(CN)6] lai hố trong d2sp3


9


Dựa vào kết quả thực nghiệm về quang phổ, người ta sắp xếp dãy các
phối tử theo chiều tăng dần khả năng tạo phức gọi là dãy quang phở hố học:
I-< Br- < Cl-< F-< OH-< C2O42- ~ H2O < NCS- < Py ~ NH3 < En ... NO2- < CN1.2.3. Ưu nhược điểm của thuyết VB
Ưu điểm:
Giải thích đơn giản liên kết hình thành và dạng hình học của phức chất.
Giải thích được từ tính của phức chất.
Nhược điểm:
Phương pháp chỉ hạn chế ở cách giải thích định tính.
Khơng giải thích và tiên đoán các tính chất từ chi tiết của phức chất (ví dụ
sự bất đẳng hướng của độ cảm từ, cộng hưởng thuận từ v.v…).
Không giải thích được năng lượng tương đối của liên kết đối với các cấu
trúc khác nhau và không tính đến việc tách năng lượng của các phân mức d.
Do đó, không cho phép giải thích và tiên đoán về quang phổ hấp thụ của các
phức chất.
1.3. Thuyết trường tinh thể giải thích phức chất [8]
1.3.1. Luận điểm
Liên kết hoá học trong phức chất là lực tương tác tĩnh điện giữa ion
trung tâm và phối tử.
Ion trung tâm (thường là cation kim loại) được nghiên cứu cấu trúc e một
cách chi tiết. Phối tử được coi như những điện tích điểm (nếu là anion) hay
lưỡng cực điểm (nếu là phân tử trung hoà) tạo nên trường có đối xứng xác
định tác dụng lên ion trung tâm.
Các AO d của ion trung tâm ở trạng thái tự do gờm dxy; dxz; dyz; dx2-y2; dz2
có cùng mức năng lượng. Tương tác của ion trung tâm với trường tĩnh điện
của phối tử làm các AO d giảm bậc suy biến, tách thành các mức có năng
lượng khác nhau.


10


Quy tắc điền e vào các AO d của ion trung tâm cũng giống như quy tắc
điền e vào nguyên tử, xong có chú ý đến năng lượng ghép đôi e và thông số
tách mức năng lượng của AO d.
1.3.2. Nội dung
*Phức bát diện
- Các AO dz2; dx2-y2 phân bố trên trục z; x; y nên gần phối tử hơn, do đó chịu
lực đẩy mạnh hơn nên nó có năng lượng cao hơn (eg). Ba AO dxy; dxz; dyz nằm
trên đường phân giác của các trục x; y; z tương ứng ở xa phối tử nên có năng
lượng thấp hơn (t2g).
dz2 dx2-y2

eg

dxy dxz dyz

t2g

Hình 1.3. Giản đồ tách mức năng lượng của phức bát diện.
Ví dụ: Trường phới tử giải thích [CoF6]3- thuận từ, spin cao
[Co(CN6)]3- nghịch từ, spin thấp
* Phức tứ diện
- Ngược với trường bát diện các AO dxy; dxz; dyz gần phối tử hơn nên bị đẩy
lên mức năng lượng cao, còn AO dz2; dx2-y2 có năng lượng thấp hơn.

11



dxy dxz dyz

t2g

dz2 dx2-y2

eg

Hình 1.4. Giản đồ tách mức năng lượng của phức tứ diện.

Ví dụ: [Cu(NH3)4]SO4
*Phức vng phẳng
- Hiện tượng phân chia năng lượng của các AO d phức tạp hơn: AO dx2-y2
gần phối tử hơn nên có năng lượng cao hơn dz2. AO dxy chịu tác dụng trực tiếp
nên có năng lượng hơi cao hơn dxz; dyz
- Như vậy phức vuông phẳng là biến dạng của phức bát diện khi hai
nhóm thế ở vị trí trans trên trục z bị mất đi. Do đó obitan dz2 làm bền hơn
nhiều và obitan dxz; dyz được làm bền thêm một ít còn các obitan dx2-y2; dxy
kém bền hơn so với phức bát diện.
1.3.3. Giải thích một số tính chất của phức:
* Thông số tách năng lượng (  ): Là hiệu năng lượng của obitan d”cao”
với obitan d”thấp”.
- Với phức bát diện: mỗi electron chiếm obitan eg có năng lượng cao hơn
3 / 5o , mỗi electron chiếm obitan t2g có năng lượng thấp hơn 2 / 5o

- Với phức tứ diện: mỗi electron chiếm obitan t2g có năng lượng cao hơn
2 / 5T , mỗi electron chiếm obitan eg có năng lượng thấp hơn 3 / 5T

- Các yếu tố ảnh hưởng tới  :
+ o  T , nếu cùng ion trung tâm và phới tử thì o  9 / 4T


12


+ Điện tích ion trung tâm lớn thì  lớn
+ Bán kính ion trung tâm lớn thì  lớn
+ Phới tử càng mạnh thì  càng lớn
Bảng 1.2. Thơng sớ tách năng lượng cua trường bát diện.
[CrCl6]4-: 13000

[Co(H2O)6]3+: 18200

[Cr(H2O)6]2+: 14000

[Co(NH3)6]3+: 22900

[CrCl6]3-: 13200

[Co(CN)6]3-: 33.500

[Cr(H2O)6]3+: 17400

[Fe(CN)6]4-: 32800

[Cr(NH3)6]3+: 21500

[Fe(CN)6]3-: 35000

* Từ tính
- Nếu P >  thì e được phân bố trên 5AO d rời sau đó mới ghép đơi và

phức có spin cao
- Nếu P <  thì e được điền đủ cặp vào những AO có năng lượng thấp và
phức có spin thấp.
Vd ion [CoF6]3- và [Co(CN)6]3- được đề cập ở trên.
* Năng lượng bền của phức
ELb là hiệu năng lượng của các electron phân bố ở các obitan d thấp với
các electron ở các obitan d cao:
6 0
Ví dụ: Ion Co2+ trong phức bát diện có cấu hình 𝑡2𝑔
𝑒𝑔 có

ELb = 6.2 / 5o  3/ 5o  9 / 5o
Năng lượng làm bền cao giải thích tính trơ động học của phức chất
spin thấp.
* Hiệu ứng Jan-Telơ
Trạng thái suy biến của một phân tử không thẳng hàng là không bền,
phân tử sẽ biến dạng hình học để giảm tính đối xứng và độ suy biến.

13


* Phổ hấp thụ và màu của phức chất
Một trong những thành tựu nổi bật nhất của thuyết trường tinh thể là giải
thích ngun nhân sinh ra phơ hấp thụ của phức chất các kim loại chuyển tiếp.
Phổ hấp thụ electron của đa số phức chất của nguyên tố d gây nên bởi sự
chuyển dời electron từ obitan d có năng lượng thấp đến obitan d có năng
lượng cao (sự chuyển dời d-d)
Bảng 1.3. Bước sóng của ánh sáng trơng thấy và màu
Bước sóng của bức Màu của bức xạ


Màu trơng thấy

xạ bị hấp thụ (A0)

bị hấp thụ

(màu phụ)

4000-4350

Tím

Vàng - lục

4350-4800

Xanh chàm

Vàng

4800-4900

Lam

Da cam

4900-5000

Lam


Đỏ

5000-5600

Lục

Đỏ tía

5600-5750

Lục – vàng

Tím

5750-5900

Vàng

Xanh chàm

5900-6050

Da cam

Lam

6050-7300

Đỏ


Lam

7300-7600

Đỏ tía

Lục

1.3.4. Ưu điểm và hạn chế
Ưu điểm:
Giải thích và tiên đoán nhiều đặc điểm và tính chất của phức chất: sớ
phới trí, tính chất từ, tính chất nhiệt đợng và phở hấp thụ electron.
Nhược điểm:
Không giải thích được phổ chuyển dịch điện tích

14


Khơng đề cập đến liên kết  hình thành trong phức chất. Do không thể
mô tả được các liên kết bợi và liên kết cợng hóa trị nên thút này không thể
xét đến các phức chất xyanua, cacbonyl, nitrozyl, đa số các hợp chất nội phức,
các phức chất với amin thơm v.v… Nếu áp dụng thuyết trường tinh thể vào
các đới tượng này thì các kết ḷn thu được sẽ không phù hợp với các dữ kiện
thực nghiệm.

15


CHƯƠNG 2: ỨNG DỤNG THUYẾT VB VÀO GIẢI THÍCH MỘT SỐ
PHỨC CHẤT

2.1. Nợi dung [6]
Liên kết hố học hình thành trong phức chất được thực hiện bởi sự xen
phủ giữa AO chứa cặp e riêng của phối tử với AO lai hố trớng có định hướng
khơng gian thích hợp của hạt trung tâm.
2.1.1. Mợt sớ trường hợp lai hoá
Cấu hình không gian của phức chất phụ thuộc vào dạng lai hố.
- Lai hố sp: cấu hình thẳng (Ag+ , Hg2+ )
- Lai hố sp3: cấu hình tứ diện (Al3+, Zn2+ , Co2+, Fe2+, Ti3+ ...)
- Lai hố dsp2: cấu hình vng phẳng (Au3+, Pd2+, Cu2+, Ni2+, Pt2+ ...)
- Lai hố d2sp3: cấu hình bát diện (Cr3+, Pt4+, Co3+ , Fe3+, Rh3+ ... )
Các obitan ḿn lai hố được với nhau phải năng lượng gần nhau và
phải có cấu hình hình học và sự định hướng của obitan trong không gian.
Các dạng lai hố và sự phân bớ hình học của phối tử trong phức chất xác
định chủ yếu bởi cấu tạo electron của ion trung tâm. Ngồi ra chúng cịn phụ
thuộc vào bản chất của các phối tử. Cùng ion kim loại nhưng với những phới
tử khác nhau chúng có thể tạo ra các phức chất khác nhau với các dạng lai hố
khác nhau, các phức đó có cấu hình khơng gian và từ tính khác nhau.
VD:
[Fe(H2O)6]Cl3 lai hố ngồi sp3d2
K3[Fe(CN)6] lai hoá trong d2sp3

16


Bảng 2.1. Một số trường hợp lai hoá
Dạng lai hoá

Dạng hình học

Mợt sớ ion trung tâm


sp

đường thẳng

Ag+; Cu+…

sp3

tứ diện

Fe3+; Al3+; Zn2+; Co2+; Ti3+…

dsp2

vuông phẳng

Pt2+; Pd2+; Cu2+; Ni2+; Au3+…

d2sp3 hoặc sp3d2

bát diện

Cr3+; Co3+; Fe3+; Pt4+; Rh3+…

2.1.2. Cường độ của phối tử
- Các phối tử có tương tác khác nhau đến ion trung tâm, nó ảnh hưởng
đến trạng thái lai hố của ion trung tâm và từ tính của phức. Khả năng tương
tác của các phới tử được xếp theo trình tự sau:
I-


- Dãy phối tử được gọi là dãy quang phổ hố học, những phới tử đứng
trước có trường ́u hơn phối tử đứng sau. Thường những phối tử đứng trước
NH3 gây trường yếu, đứng sau NH3 gây trường mạnh.
2.2. Giải thích phức chất theo thuyết VB
* Giải thích:
 Viết cấu hình lớp ngồi cùng của NTCT: dạng chữ, dạng AO
- Dựa vào bản chất của phối tử.
- Phối tử trường mạnh có sự dờn e ở d → viết lại cấu hình AO d
- Phới tử trường ́u khơng có sự dồn e ở d.
 Từ số phối trí → sớ AO lai hóa và cấu hình AO d → dạng lai hóa
- Phức thuận từ hay nghịch từ
- Phức spin cao hay thấp
- Lai hóa ngồi hay lai hóa trong.

17


2.3. Mợt sớ bài tập ứng dụng có lời giải
Câu 1:
Dựa vào thuyết VB hãy giải thích sự hình thành phức [Ni(Cl)4]

2-

Hướng dẫn
Ni(28): [Ar] 3d8 4s2
2+

Ni : [Ar]3d8


3d8

4s0

↑↓ ↑↓ ↑↓ ↑

4p0



Vì phới tử Cl- được xếp vào loại “phới tử trường yếu’’ nghĩa là
tương tác yếu với ion trung tâm, không đủ năng lượng để buộc (đẩy)
các electron độc thân của ion trung tâm ghép đôi, chúng vẫn ở trạng thái
độc thân trong ion phức (không tham gia liên kết) và làm cho phức có mức
năng lượng cao, gọi tắt là phức spin cao.
Để tạo liên kết với phối tử thì (AO) 4s và 3(AO) 4p cùa ion trung tâm
lai hoá với nhau tạo 4(AO) sp3 hướng về 4 đỉnh cùa hình tứ diện đều. Vì chỉ
có các orbitan lớp ngoài lai hoá nên sự lai hoá ở đây gọi là lai hoá ngồi. Vì
phân lớp 3d có cấu hình không đổi nên khi tạo phức phân lớp này vẫn còn 2e
độc thân → phức có tính thuận từ.
3d
2+

Ni :[Ar]3d8

↑↓ ↑↓

↑↓




4s

4p

Cl-

Cl- Cl- Cl-



Lai hố sp3

Phức [NiCl4]2- có cấu hình tứ diện đều, thuận từ, spin cao.
Câu 2:
Dựa vào thuyết VB hãy giải thích sự hình thành liên kết trong phức
[Ni(CN)4]2Hướng dẫn

18


Ni2+: [Ar]3d8
Phới tử CN- là “phới tử trường mạnh” vì CN-tương tác mạnh với Ni2+,
đẩy 2 electron độc thân của Ni2+ ghép đôi với nhau, tạo 1(AO)3d
trống. Khi đó 1(AO) 3d + 1(AO) 4s và 2 (AO) 4p lai hoá với nhau tạo
4(AO) lai hố dsp2
dsp2
Ni2+:[Ar]3d8

↑↓


↑↓

↑↓

↑↓
CN-

CN-

CN- CN-

4(AO)dsp2 nằm trên mợt mặt phẳng, hướng về 4 đỉnh mợt hình vng.
Phức [Ni(CN)4]2- khơng có electron đợc thân nên nghịch từ, spin thấp.
2-

Nhận xét : Phức [Ni(Cl)4]2- và phức [Ni(CN)4]

đều có ion trung tâm

Ni2+ với cấu hình [Ar]3d84s2, tuỳ theo phới tử có thể xác định từ tính của
phức và đốn được cấu trúc của phức. Nếu phức nghịch từ thì cấu trúc
là vng phẳng, nếu phức tḥn từ thì cấu trúc là tứ diện.
Câu 3:
Dựa vào thuyết VB giải thích sự hình thành hình thành liên kết phức
[Co(NH3)6]3+

Hướng dẫn
Co(27): [Ar] 3d7 4s2
3d6

Co3+:[Ar]3d64s04p0

↑↓









Phới tử NH3 liên kết với Co3+ là trường phối tử mạnh, có đủ năng
lượng để đẩy các electron đợc thân của Co3+ ghép đôi với nhau tạo 2(AO)

19


×