1
CHƢƠNG 1
MỞ ĐẦU
1.1. Đặt vấn đề
Bông vải (Gossypium hirsutum.L) là cây trồng lấy sợi quan trọng hàng đầu để thoả
mãn một trong những nhu cầu bức thiết của con người là mặc, đồng thời cũng là cây lấy
dầu từ hạt quan trọng thứ hai trên thế giới sau cây đậu tương (Nobre và ctv, 2001). Cây
bông vải được trồng khắp nơi trên thế giới. Trong các nước trồng bông vải thì Ấn Độ là
nước sản xuất bông vải lớn nhất, đứng đầu về diện tích (khoảng 9,7 triệu ha) chiếm 32%, kế
đến là Mỹ chiếm 24% và Trung Quốc chiếm 20% diện tích trồng bông vải toàn cầu
(Satyavathi và ctv, 2002).
Ở Việt Nam nghề trồng bông vải có từ ngàn xưa và từng là loại cây trồng quan trọng
ở vùng Duyên Hải Trung Bộ trong thời kỳ kháng chiến chống Pháp. Sau năm 1975, nhà
nước ta nhiều lần cố gắng tổ chức trồng bông ở đây nhưng không thành công do giá cả thị
trường bấp bênh và không phòng trừ được sậu đục quả bông một cách hiệu quả dẫn đến
người trồng bông thua lỗ, diện tích trồng bông không thể phát triển được.
Trong những năm gần đây, do áp dụng những tiến bộ khoa học và công nghệ đã cho
ra đời các giống bông lai kháng sâu và có năng suất cao để đưa vào sản xuất. Tuy nhiên sản
lượng bông xơ chỉ đáp ứng một phần nhỏ (10 - 15%) nhu cầu nguyên liệu cho ngành dệt
may. Dự kiến đến năm 2010, sản lượng bông xơ đáp ứng 20% nhu cầu trong nước, đưa
diện tích trồng bông tăng lên 1 triệu ha, tập trung ở vùng Duyên Hải Miền Trung, Tây
Nguyên, Đông Nam Bộ và Đồng Bằng Sông Cửu Long ( Bộ Nông Nghiệp và PTNT,
2003).
Từ lâu người ta đã quan tâm nhiều đến việc cải thiện đặc tính di truyền của các loài
cây bông vải. Mặc dù có nhiều giống bông vải tốt được tạo ra theo các phương pháp lai tạo
và chọn lọc truyền thống, nhưng dường như các giống bông đó khó có thể khai thác được
các nguồn gen có lợi một cách hiệu quả. Việc ứng dụng công nghệ di truyền thực vật có thể
thúc đẩy việc tạo ra các giống cây bông có nhiều đặc tính ưu việt về đặc tính nông học như
tính kháng sâu bệnh hại, thuốc diệt cỏ và tính chống chịu với các đều kiện bất lợi của môi
trường (rét, khô hạn, phèn, mặn…) và các tính trạng số lượng cũng như chất lượng của
bông và sợi (Gasser và Fraley, 1992).
2
Trong thập kỷ qua, các nổ lực nghiên cứu chuyên sâu đã từng tập trung trên cây bông
vải và các gen quy định các đặc tính nông học tốt đã được chuyển nạp bằng phương pháp
chuyển gen nhờ Agrobacterium (Perlak và ctv, 1990; Thomas và ctv, 1995; Satyavathi và
ctv, 2000). Cây bông vải đã được xem là cây khó có thể chuyển nạp gen và chỉ sau khi các
giống nhóm bông vải Coker được phát hiện là đáp ứng tốt cho sự chuyển nạp gen (Nobre và
ctv, 2001) thì các gen mong muốn đều được chuyển vào nhóm giống này và sau đó hồi giao
với các giống bông khác. Ngoài sự giới hạn về kiểu gen, một số cây tái sinh từ mô sẹo có
hình thái dị thường do biến dị soma cho nên sự cải tiến phương pháp nuôi cấy để tạo ra hệ
thống tái sinh hiệu quả là cần thiết. Các phương pháp chọn tạo giống truyền thống và các kỹ
thuật công nghệ sinh học tiến bộ gần đây (bao gồm các quy trình nuôi cấy mô và chuyển
nạp gen) đã và đang được ứng dụng vào việc chọn tạo giống bông vải (Nobre và ctv, 2001).
Trong chuyển nạp gen ở cây trồng, hệ thống thanh lọc cây biến đổi gen thông dụng
nhất là sử dụng thuốc kháng sinh và thuốc diệt cỏ (Christou, 1997). Việc sử dụng các hệ
thống chọn lọc này gây nhiều lo ngại về tính an toàn của cây trồng biến đổi gen đối với con
người và môi trường. Nhằm khắc phục vấn đề này, phương pháp chọn lọc mới thộng qua
thanh lọc bằng đường mannose được áp dụng. Hệ thống thanh lọc này dựa trên enzyme
phosphomannose isomerase mã hoá bởi gen pmi được phân lập từ vi khuẩn E. coli. Enzyme
này đóng vai trò trong việc chuyển hóa đường mannose làm nguồn carbon cho các hoạt
động biến dưỡng trong sinh vật và các tế bào thực vật biến đổi gen (Hoa và Bong,
2003).
Hiện nay ở Việt Nam, các hệ thống tái sinh cây bông vải qua mô sẹo chưa được thực
hiện thành công và việc chuyển gen chỉ được thực hiện bằng vi tiêm vào ống phấn và
chuyển trực tiếp trên đỉnh chồi (Lê Trần Bình, 2001). Phương pháp chuyển gen này tuy có
hiệu quả nhưng sự biểu hiện của các gen chuyển nạp trên cây không được hoàn toàn, tạo ra
các thể khảm gây khó khăn cho việc phân tích và thu nhận cây chuyển gen sau này. Sự thu
nhận cây chuyển gen tái sinh qua con đường sinh phôi thể hệ từ các tế bào sinh phôi là các
phương pháp được ưu chuộng hiện nay (Chen và ctv, 2000).
Cho đến nay chưa có một nghiên cứu nào được thực hiện để tìm hiểu khả năng
chuyển nạp gen bằng vi khuẩn Agrobacterium tumefaciens trên các giống bông vải đang
trồng ở Việt Nam. Vì vậy việc thực hiện đề tài “Nghiên cứu khả năng chuyển nạp gen của
ba giống bông vải Coker 312 và VN36P bằng vi khuẩn Agrobacterium tumefaciens ” là một
vấn đề cần thiết
3
1.2. Mục tiêu của khóa luận
Tìm hiểu khả năng chuyển nạp gen của hai giống bông vải Coker 312 và VN36P
bằng phương pháp vi khuẩn Agrobacterium tumefaciens và hệ thống chọn lọc bằng
mannose để thanh lọc mô sẹo sau khi được chuyển nạp.
1.3. Hạn chế của khóa luận
Do thời gian thực hiện ngắn nên khóa luận chỉ thực hiện xong giai đoạn thanh lọc
(qua 3 vòng) mô sẹo đã được chuyển nạp gen trên hai giống Coker312 và VN36P. Giai
đoạn thử nghiệm sự biểu hiện gen chỉ thị gus (β-glucuronidase) tạm thời các mô sẹo đã qua
thanh lọc chưa có điều kiện thực hiện.
4
CHƢƠNG 2
TỔNG QUAN TÀI LIỆU
2.1. Sơ lƣợc về cây bông vải
2.1.1. Vị trí phân loại
Cây bông vải thuộc Ngành hiển hoa bí tử (Angiospermatophyta), Lớp song tử diệp
(Dicotyledoneae), Họ Malvaceae, Chi Gossypium (Hộ, 1997).
2.1.2. Tính đa dạng, nguồn gốc và phân bố
Chi Gossypium rất đa dạng, có 39 loài, trong đó có 5 loài được trồng phổ biến trên thế
giới (Hộ, 1997), và có 3 loài được trồng ở Việt Nam: G. arboreum, G. hirsutum, G.
barbadense.
2.1.2.1. Gossypium arboreum
Loài G. arboretum (loài bông Cỏ) có nguồn gốc từ châu Á, có mặt và gắn liền với
nghề trồng bông ở nước ta từ lâu. Các giống bông Cỏ có dạng hình thoáng, thân mảnh, lá
nhỏ, lông ít, rễ cộc nhỏ với bộ rễ ăn nông, chịu được mưa, cuống quả dài rủ xuống, đầu quả
quay xuống đất, vỏ quả mỏng, chín sớm, hạn chế được hiện tượng thối quả khi gặp mưa lúc
bông nở. Về phẩm chất xơ bông Cỏ : thô, tỉ lệ xơ thấp, độ mịn kém. Trong khoảng thế kỷ
XIII – XIV, loài bông này được trồng phổ biến khắp mọi miền đất nước. Các giống bông
Cỏ hiện có ở Việt Nam thuộc 2 loài phụ: G. arboreum ssp neglectum và G.arboreum ssp
nanking (Lê Quang Quyến, 2004).
2.1.2.2. Gossypium hirsutum
Loài Gossypium hirsutum (loài bông Luồi) thường là cây hàng năm, cây cao, lá to,
mặt lá phẳng. Cành lá khỏe, số lượng lá nhiều, quả tròn, mặt quả nhẵn, trọng lượng hạt
bông trung bình trong một quả đạt 5 - 6g. Loài G. hirsutum xuất xứ từ Trung Mỹ, du nhập
vào Việt Nam khoảng cuối thế kỷ XIX đầu thế kỷ XX. Loài này có khả năng thích ứng
rộng, phù hợp với đều kiện trồng nhờ nước trời ở nước ta, với tiềm năng cho năng suất cao
và có chất lương xơ tốt, các giống bông này dần thay thế các giống bông Cỏ trước đó. Bông
Luồi được trồng nhiều nhất ở Mỹ, Nga, Ấn Độ, Mêhico, Trung Quốc, Braxin… Bông Luồi
5
có nhiều loài phụ như : G.hirsutum ssp. Mexicanum, G.hirsutum ssp. punctatum,
G.hirsutum ssp. panicultum…
2.1.2.3. Gossypium barbadense
Loài Gossypium barbadense còn gọi là bông Hải Đảo, cây tương đối to, chín muộn,
lá to, khía sâu, màu xanh đậm. Thân cành lá gần như không có lông, đài không có răng cưa
rõ rệt và thường chỉ gợn hình làn sóng. Hạt thường nhẵn, không có xơ ngắn, xơ dài màu
trắng hoặc cà phê sữa. Loài G. barbadense có nguồn gốc từ Nam Mỹ, nay được trồng nhiều
ở Nga, Mỹ, Ai Cập và một số nước khác. Loài này thường gặp dưới dạng cây bông lâu năm
ở trong các vườn hoang và bờ dậu. Bông Hải Đảo chỉ thích hợp trong vụ khô có tưới, không
thích hợp với đều kiện mưa nhiều, độ ẩm cao. Bông Hải Đảo có nhiều loài phụ như: G.
barbadense ssp. darwinii, G. barbadense ssp. ruderale, G. barbadense ssp. ventiforlum.
Hiện nay loài này được nghiên cứu trong chương trình tạo giống bông lai giữa bông
Luồi với bông Hải Đảo nhằm mục đích khai thác khả năng cho năng suất cao của bông
Luồi kết hợp với chất lượng xơ tốt của bông Hải Đảo.
2.1.2.4. Gossypium herbaceum
Loài này phân bố chủ yếu ở các sa mạc, khí hậu khô nóng như vùng Trung Á, Tây
Bắc Trung Quốc, Châu Phi, chưa thấy trồng ở Việt Nam.
2.1.2.5. Gossypium tricuspidatum
Loài này khá giống loài G. hirsutum, cây và lá to, chín hơi muộn, xơ dài và mịn. Loài
này đòi hỏi đất tốt, nhiều nước, nhiệt độ cao, chống chịu sâu bệnh khá và được trồng nhiều
ở Nam Mỹ. Loài bông này không có ở Việt Nam
2.1.3. Tình hình sản xuất bông vải ở Việt Nam
Trước thời Pháp thuộc, giống bông vải được sử dụng chủ yếu là các giống bông Cỏ
địa phương (Gossypium arboreum). Giống bông này cho năng suất thấp. Một số ít diện tích
ở Trung Bộ và Nam Bộ đã được trồng các giống bông Luồi (Gossypium hirsutum) nhập nội
với năng suất đạt 300 – 500 kg/ha. Đầu thế kỷ 20, nước ta đã xuất khẩu bông sang Nhật,
Hồng Kông. Trong thời kỳ kháng chiến chống Pháp, diện tích trồng bông đã được phát triển
mạnh, trong đó liên khu V đạt khoảng 10000 ha và liên khu IV đạt khoảng 13000 ha.
6
Sau năm 1954, các giống bông Luồi nhập nội được thay thế một phần cho giống bông
Cỏ địa phương. Sau ngày đất nước thống nhất, xuất phát từ nhu cầu cấp thiết về nguyên liệu
bông xơ cho ngành Dệt May, Đảng và nhà nước ta có chủ trương đẩy mạnh việc phát triển
cây bông ở vùng Duyên hải Miền Trung và Tây Nguyên. Tuy nhiên việc phát triển bông
theo kế hoạch không thưc hiện được do:
i. Tổ chức sản xuất trên cơ sở kế hoạch tập trung giao cho Hợp tác xã Nông nghiệp
và các Nông trường quốc doanh, theo cơ chế bao cấp, kém năng động, nên
không phát huy hết sức mạnh và nguồn lực toàn dân.
ii. Sâu bệnh gây hại ở tất cả các vùng trồng bông, mùa khô không đủ nước tưới, dẫn
đến người trồng bông thua lỗ, các nông trường bị giải thể, diện tích bông không
thể phát triển được.
iii. Chưa có giống bông phù hợp với từng đều kiện sinh thái và kháng sâu bệnh.
Chưa có hệ thống cơ sở hạ tầng cho việc phát triển bông, như hệ thống thuỷ lợi
đồng bộ ( Lê Kim Hỷ, 2003; Lê Quang Quyến, 2004.).
Sau năm 1990, Nhà nước ta chủ trương phát triển bông dựa vào các hộ nông dân, nền
sản xuất bông chuyển hướng từ tập trung sang phân tán trong đều kiện mùa mưa nhờ nước
tưới trời nhằm giảm áp lực sâu hại, do đó diện tích bông được nhanh chóng mở rộng và
năng suất được nâng lên bình quân khoảng 7- 8 tạ/ha (Lê Kim Hỷ, 2003; Lê Quang Quyến,
2004).
Từ sau những năm 1990, ngành bông Việt Nam có những bước thay đổi mạnh mẽ,
chúng ta đã tạo được các giống bông, đặc biệt là các giống bông lai có năng suất cao, chất
lượng xơ tốt, chống chịu được sâu bệnh. Hàng loạt các tiến bộ kỹ thuật được áp dụng như:
áp dụng biện pháp quản lý dịch hại tổng hợp giúp giảm chi phí thuốc bảo vệ thực vật, các
biện pháp kỹ thuật canh tác khác như hệ thống luân canh xen canh hợp lý, phủ màng PE
cho bông, phun các chất đều hòa tăng trưởng… chính vì vậy mà năng suất và chất lượng
bông xơ tăng, nghề sản xuất bông cho hiệu quả kinh tế cao. Hiện nay, diện tích đã đạt hơn
35000 ha, năng suất đạt hơn 11 tạ/ha, tăng gấp hai lần so với bình quân trước đây (Bảng
2.1).
7
Bảng 2.1. Diễn biến tình hình sản xuất bông ở Việt Nam trong những năm qua.
(Nguồn: Lê Quang Quyến, 2004).
Niên Vụ Diện tích (ha) Năng suất (tạ/ha) Sản lượng (tấn)
1996/1997
1997/1998
1998/1999
1999/2000
2000/2001
2001/2002
2002/2003
10676
11716
19963
17705
13250
29573
35200
6
9
8
10
9
11
10,5
6866
10986
16245
17578
20340
32530
36960
2.1.4. Tình hình sản xuất bông trên thế giới
Vụ bông 2001- 2002 tổng diện tích bông trên thế giới là 33,457 triệu ha, trong đó các
nước đang phát triển chiếm 70% diện tích và các nước phát triển chỉ chiếm có 30% diện
tích. Trong mười nước có diện tích trồng bông lớn nhất thế giới (Bảng 2.2), thì Ấn Độ dẫn
đầu với diện tích là 8,7 triệu ha, tiếp theo là Mỹ 5,6 triệu ha, Trung Quốc 4,8 triệu ha và
Pakistan 3,1 triệu ha (ISAAA, 2002).
Sản lượng bông thế giới đã tăng từ 9,8 triệu tấn niên vụ 1960/1961 lên 21,2 triệu tấn
niên vụ 2001/2002. Trong mười nước có sản lượng bông lớn nhất thế giới (bảng 2.3) thì
Trung Quốc dẫn đầu với 5,3 triệu tấn, tiếp theo là Mỹ 4,4 triệu tấn, Ấn Độ 2,5 triệu tấn.
Điều đặc biệt là trong mười nước có sản lượng bông cao nhất thế giới thì có sáu nước là các
nước đang phát triển. Về năng suất Australia dẫn đầu với năng suất là 1658 kg bông xơ/ha,
tiếp theo là Syria 1303 kg bông xơ/ha và Trung Quốc 1103 kg bông xơ/ha (ISAAA, 2002).
Trong khi đó, diện tích trồng bông chuyển gen trên thế giới ngày càng gia tăng. Diện
tích trồng bông trên thế giới năm 2004 là 32 triệu ha, trong đó bông chuyển gen chiếm 28%
. So với năm 2003 diện tích bông chuyển gen tăng 11% (9 triệu ha trong năm 2004 so với
7,2 triệu ha trong năm 2003). Trong số các nước trồng bông chuyển gen, Ấn Độ là nước có
diện tích trồng bông chuyển gen tăng nhanh nhất thế giới (tăng 400% so với năm 2003).
Năm 2003, Ấn Độ chỉ có 100 ngàn ha bông chuyển gen nhưng năm 2004 diện tích bông
chuyển gen tăng lên 500 ngàn ha. Trung Quốc cũng là nước có sự gia tăng diện tích trồng
bông chuyển gen đáng chú ý: năm 2003 có 2,8 triệu ha nhưng năm 2004 đã tăng lên 3,7
triệu ha (chiếm 60% diện tích bông). Theo dự báo của các chuyên gia thì diện tích trồng
8
bông chuyển gen trên thế giới sẽ tiếp tục gia tăng trong những năm tới và hướng chuyển
gen vào cây bông sẽ tập trung vào việc tạo ra các giống bông kháng sâu bệnh là chủ yếu
(James, 2004)
Bảng 2.2. Mười nước có diện tích trồng bông lớn nhất thế giới năm 2001- 2002.
(ISAAA, 2002)
STT Quốc gia Triệu ha
1 Ấn Độ 8,730
2 Mỹ 5,596
3 Trung Quốc 4,824
4 Pakistan 3,125
5 Uzbekistan 1,453
6 Brazil 0,750
7 Thổ Nhĩ Kỳ 0,654
8 Turkmenistan 0,550
9 Mali 0,516
10 Benin 0,415
TỔNG CỘNG 26,613
Diện tích trồng bông của thế giới 33,457
Nguồn: ICAC, 2002 (
9
Bảng 2.3. Mười nước có sản lượng bông cao nhất thế giới năm 2001 – 2002.
(ISAAA, 2002)
STT Quốc gia
Sản lượng
(triệu tấn)
Năng suất bông xơ
(Kg/ha)
1 Trung Quốc 5,320 1103
2 Mỹ 4,420 790
3 Ấn Độ 2,508 287
4 Pakistan 1,853 593
5 Uzbekistan 1,055 726
6 Thổ Nhĩ Kỳ 0,880 1345
7 Brazil 0,750 999
8 Úc 0,670 1658
9 Syria 0,335 1303
10 Ai Cập 0,314 944
Tổng Cộng 18,105 980
Các quốc gia khác 3,132
Sản lượng toàn thế giới 21,237 635
Nguồn: ICAC, 2002
2.2. Một số nghiên cứu chuyển nạp gen ở bông vải
Hiện nay có nhiều phương pháp chuyển nạp gen khác nhau nhưng phổ biến là chuyển
nạp gen trực tiếp bằng súng bắn gen với vật liệu nuôi cấy là đỉnh chồi phân sinh hoặc từ tế
bào huyền phù (McCabe và Martinell, 1993; Rajasekaran và ctv, 2000), phương pháp
chuyển nạp gen qua trung gian Agrobacterium tumefaciens (Umbeck và ctv, 1987;
Rajasekaran và ctv, 1996; Satyavathi và ctv, 2002).
Chuyển nạp gen nhờ Agrobacterium tumefaciens ở bông vải thành công đã được công
bố lần đầu tiên vào những năm 1980 (Firoozabady và ctv, 1987; Umbeck và ctv, 1987) với
mẫu cấy là trụ hạ diệp và tử diệp. Từ đó nhiều gen được chuyển thành công vào cây bông
nhờ vi khuẩn Agrobacterium tumefaciens, bao gồm các gen kháng côn trùng và gen kháng
thuốc diệt cỏ (Perlak và ctv, 1990; Chen và ctv, 1994). Các loại mẫu cấy như trụ hạ diệp, tử
diệp, mô sẹo từ trụ hạ diệp và tử diệp cũng như phôi non đã được dùng trong việc chuyển
10
gen nhờ Agrobacterium tumefaciens hay nhờ súng bắn gen (Firoozabady và ctv, 1987;
Perlak và ctv, 1990). Ngoài ra còn có các mô phân sinh phân lập từ trục phôi đã được sử
dụng cho việc chuyển gen bằng súng bắn gen ở bông vải (Chlan và ctv, 1995).
Tuy nhiên tỉ lệ chuyển gen thường khá thấp, khoảng 20 - 30% khi trụ hạ diệp được
dùng làm mẫu cấy (Firoozabady và ctv, 1987; Rajasekaran và ctv, 1996). Một hiệu quả
chuyển gen cao hơn có ý nghĩa (đến 60%) đã được công bố khi trụ hạ diệp được dùng làm
mẫu cấy và gen onc (mã hóa cho enzyme tổng hợp octopin-octopin synthase) được dùng
làm gen chỉ thị (Firoozabady và ctv, 1987). Nhưng chỉ là kết quả của sự thử nghiệm sự biểu
hiện gen tạm thời của gen onc. Một báo cáo gần đây cho rằng hiệu quả chuyển nạp gen ở
song tử diệp chỉ khoảng 20 -30% (Cousins và ctv,1991), hiệu quả chuyển nạp gen thậm chí
còn thấp khi sử dụng phương pháp bắn gen (Keller và ctv, 1997. Sự khác biệt giữa các loại
mẫu cấy được dùng trong chuyển nạp gen có thể ảnh hưởng có ý nghĩa đến hiệu quả của
chuyển nạp gen và sự tái sinh, một số nhà nghiên cứu cho rằng để giảm thiểu các thể
chuyển nạp gen dương tính giả, tử diệp là mẫu cấy tốt hơn trụ hạ diệp (Firoozabady và ctv,
1987). Sunilkumar và Rathore (2001) đã nghiên cứu các yếu tố ảnh hưởng đến hiệu quả
chuyển nạp gen trên cây bông vải bằng vi khuẩn Agrobacterium tumefaciens cho thấy các
yếu tố như chủng vi khuẩn, acetosyringone và nhiệt độ trong chuyển gen có ảnh hưởng
đáng kể đến hiệu quả chuyển gen. Thêm vào đó kích thước mẫu cấy cũng ảnh hưởng đến sự
sống sót của các mẫu cấy trên môi trường chọn lọc (Sunilkumar và Rathore, 2001).
Sự chuyển nạp gen cũng phụ thuộc vào kiểu gen. Chỉ có một số giống nhất định mới
có khả năng tái sinh và chuyển nạp như giống bông Luồi Coker 312 và Jin 7, còn hầu hết
các giống khác thường khó có thể tái sinh và chuyển nạp được. Thiếu phương pháp tái sinh
cây hiệu quả cũng được xem như là một rào cản chính cho việc áp dụng phương pháp
chuyển gen nhờ Agrobacterium tumefaciens ở bông vải (Firoobady và ctv, 1987). Để cải
tiến phương pháp chuyển nạp, một quy trình chuyển gen hiệu quả cao dùng cuống lá và trụ
hạ diệp cây mầm làm mẫu cấy được phát triển, cùng với môi trường nuôi cấy được cải tiến
thích hợp. Hiện nay, Trung Quốc đã thành công trong việc chuyển nạp gen vào cây bông
vải bằng phương pháp tiêm DNA qua ống phấn, nhưng phương pháp này gặp khó khăn
trong việc xác định cây chuyển gen vì rất nhiều cây được tạo thành nhưng chỉ một số ít cây
được chuyển nạp gen (Chen và ctv, 2000).
11
2.3. Chuyển gen bằng vi khuẩn Agrobacterium tumefaciens.
Chuyển nạp gen là kỹ thuật đưa một hay nhiều gen lạ đã được thiết kế ở dạng DNA
tái tổ hợp vào bộ gen của sinh vật đang nghiên cứu. Những thành tựu của kỹ thuật nuôi cấy
mô và kỹ thuật tái tổ hợp DNA đã mở ra triển vọng đối với chuyển nạp gen ở thực vật bậc
cao, tạo ra những tính trạng di truyền mới như kháng sâu bệnh hại, thuốc diệt cỏ… Sự
chuyển nạp gen thành công trên cây trồng đã được ghi nhận bằng cách sử dụng plasmid Ti,
thông qua vi khuẩn Agrobacterium tumefaciens để đưa gen mong muốn vào trong bộ gen
cây trồng. Phương pháp sử dụng vi khuẩn Agrobacterium tumefaciens để chuyển nạp gen
còn được gọi là phương pháp chuyển nạp gen gián tiếp.
2.3.1. Đặc điểm vi khuẩn Agrobacterium tumefaciens
Giống Agrobacterium được chia làm một số loài dựa trên triệu chứng gây bệnh và kí
chủ. Một số loài thuộc chi Agrobacterium như: A. radiobacter ( loài nay không gây bệnh
cho cây), A. tumefaciens và A. rhizogens gây bệnh khối u và bệnh cổ rễ… (Jiang, 2004)
Hình 2.1. Khối u do Agrobacterium tumefaciens gây ra trên thực vật. A: một khối
u lớn trên thân cây hoa Hồng; B: các khối u trên cành Nho (Deacon và ctv, 2005).
Agrobacterium tumefaciens là vi khuẩn hình que, gram âm, có khả năng di động,
không sinh bào tử và có quan hệ gần gũi với vi khuẩn cố định đạm Rhizobium (Deacon và
ctv, 2005). Vi khuẩn Agrobacterium tumefaciens là vi khuẩn hiếu khí, có 5- 11 lông roi, vi
khuẩn này phát triển tối ưu ở nhiệt 29
o
C trong môi trường có bổ sung mangan và succinate
như là nguồn cacbon duy nhất (Domer, 1999). Agrobacterium tumefaciens là vi khuẩn gây
bệnh khối u trên cây (chủ yếu là cây hai lá mầm) khi xâm nhiễm vào cây. Bộ nhiễm sắc thể
vi khuẩn Agrobacterium tumefaciens dạng vòng có kích thước là 2,6Mb. Ngoài ra vi khuẩn
12
còn mang plasmid lớn có kích thước 200 - 800 kb (Gelvin, 2003), chính plamid này là
nguyên nhân gây ra khối u trên cây khi vi khuẩn này xâm nhập. Plasmid này có tên gọi là
Plasmid Ti, hầu hết các gen gây khối u đều nằm trên plasmid này (Deacon và ctv, 2005).
Khi rễ cây xuất hiện vết thương thì tế bào vi khuẩn sẽ di chuyển về phía vết thương và xâm
nhập vào cây qua vết thương đó. Vi khuẩn độc mang một hoặc nhiều plasmid, một trong số
đó là Plasmid Ti. Plasmid Ti mang các gen để xác định kí chủ và triệu chứng khi nhiễm vào
cây. Những vi khuẩn không mang Plasmid Ti thì được xem như là vi khuẩn không độc và
không có khả năng gây bệnh khối u cho cây. Khối u đầu tiên xuất hiện nhỏ màu trắng, ban
đầu được tìm thấy ở gốc cây. Các khối u lớn dần và xuất hiện các vết lốm đốm nâu đen do
các tế bào ngoại biên chết đi. Các khối u có thể mền và xốp và có thể bị vỡ vụn khi chạm
vào, nhưng cũng có thể cứng và xuất hiện các u nhỏ. Các khối u có đường kính đến 30 cm
nhưng phổ biến là 5 – 10 cm. Cây bị nhiễm vi khuẩn sẽ trở nên còi cọc, lá úa vàng và rất
nhạy cảm với các điều kiện môi trường. Khi xâm nhiễm vào cây một phần gen trên Plasmid
Ti sẽ gắn vào bộ gen của cây làm cho các tế bào phát triển mạnh và sản xuất ra một chất đặc
biệt gọi là Opine. Vi khuẩn sẽ sử dụng chất này như một nguồn cacbon
2.3.2. Ti-plamid
Plasmid Ti là một DNA vòng tách rời với nhiễm sắc thể của vi khuẩn và có khả
năng nhân lên một cách độc lập trong tế bào vi khuẩn. Việc xác định Plasmid Ti như một
nguyên lý tạo bướu TIP (tumor inducing principle) đã đánh dấu bước khởi động của một
giai đoạn mới trong nghiên cứu về Agrobacterium tumefaciens. Điều này đã mở ra khả
năng nghiên cứu cấu trúc và chức năng của plasmid bằng kỹ thuật di truyền phân tử (Bùi
Chí Bửu và Nguyễn Thị Lang, 2000).
Plasmid Ti có cấu trúc bao gồm: đoạn T- DNA mang các gen tổng hợp các hormon
thực vật và vùng gen vir, ngoài ra còn có một số gen mã hoá cho việc tái sinh plasmid, cho
việc tiêu hoá opine. Trong cấu trúc của Plasmid Ti , hai yếu tố quan trọng cần cho sự
chuyển gen vào cây là đoạn T- DNA bao gồm cả trình tự 25 bp ở hai cánh của đoạn T-
DNA và gen vir (Nguyễn Đức Lượng và ctv, 2002).
2.3.2.1 Chức năng của T-DNA
T-DNA là một đoạn DNA có kích thước 10-30 kb, trong đó có chứa gen mã hoá cho
việc tổng hợp auxin, cytokinin, opine và các gen gây khối u (Gelvin, 2003). Trong Plasmid
13
Ti, vị trí của T-DNA được giới hạn bởi bờ phải và bờ trái. Trình tự nucleotide của bờ phải
và bờ trái tương tự nhau và đều có kích thước 25bp (Gelvin, 2003). Tuy nhiên, bờ trái của
T-DNA có thể được bỏ qua trong chuyển nạp T-DNA, trong khi đó bờ phải lại cần thiết và
tiến trình chuyển nạp diễn ra với bờ phải trước và tiến dần về phía trái. Việc đảo ngược bờ
phải sẽ làm yếu đi khả năng tạo khối u (Gelvin, 2003; Zhu và ctv, 2000).
T-DNA mã hóa một vài protein và các protein này biểu hiện trong tế bào cây được
chuyển gen làm kiểu hình cây thay đổi lớn. Các gen trên T-DNA có thể biểu hiện trong tế
bào cây bằng cách mô phỏng các gen của cơ thể đa bào. Theo Binns và Costantino (1998),
T-DNA mã hóa cho 13 protein và những vùng không sao mã của các gen được chuyển
mang nhiều đặc điểm của các gen trong cây, yếu tố tăng cường sao mã, các vị trí gắn đuôi
poly A của cơ thể đa bào. Một nhóm các gen của T-DNA điều khiển tổng hợp các hormon
sinh trưởng của cây, những hormon này làm các tế bào tăng sinh và làm thay đổi hình dạng
bên ngoài. Sản phẩm của gen iaaM và gen iaaH điều khiển sự chuyển hoá tryptophan
thông qua indolacetamin thành indolacetic axit (auxin). Sản phẩm của gen ipt giúp gắn kết
isopentenyl pyrophosphat với AMP (Binns và Costantino, 1998) và các enzyme trong cây
được cho là chuyển hoá isopentenyl-AMP thành cytokinin zeatin bằng cách loại bỏ nhóm
phosphoribosyl và loại bỏ phân tử hydro của một nhóm methyl của isopentenyl. Hai gen
trên T-DNA khác được cho là có chức năng trong tạo khối u là 5 và tml (cũng còn gọi là
6b). Sản phẩm của gen 5 điều khiển sinh tổng hợp indole-3-lactate, đó là một chất đồng
đẳng với auxin (Korber và ctv,1991). Trong khi đó gen tml làm tăng mức độ nhạy cảm của
các tế bào cây với phytohormon bằng một cơ chế chưa được giải thích (Tinland và ctv,
1992). Gen tml có thể kích thích tạo các khối u ngay cả khi vắng mặt các gen gây khối u
khác.
Một nhóm gen được chuyển thứ hai đều khiển sản xuất nguồn dinh dưỡng cho vi
khuẩn, đó là các opine. Đây là một dạng kết hợp giữa một aminoacid với một keto acid
hoặc một đường (Dessaux và ctv, 1998). Các tế bào chuyển gen tổng hợp và tiết ra một số
lượng lớn các opine. Các opine này hấp dẫn vi khuẩn mang kiểu gen tiêu biểu (bên ngoài
vùng T-DNA và thường trên plasmid độc) cần cho việc phân giải các opine được tổng hợp
từ khối u. Dựa trên các kiểu opine đựơc tạo ra từ các khối u mà phân chia nhóm vi khuẩn
Agrobacterium thành các chủng như là: octopine, nopaline, succinamopine và leucinopine.
Hiện có ít nhất là 20 loại opine khác nhau, mỗi chủng tạo ra và phân giải một nhóm opine
chuyên biệt (Ziemienowicz, 2001, trích từ Petit và Tempé, 1985). Gen ocs mã hóa cho
14
octopine synthase, enzyme này gắn pyruvate với arginine, lysine, histidine hoặc ornithine để
tạo ra octopine, lysopine, histopine hoặc octopinic acid và tất cả những opine này đều được
phát hiện trong các khối u (Dessaux và ctv, 1998). Sản phẩm của gen mas2’ được cho là
làm kết nối glutamine hoặc glutamic acid với glucose (mặc dù đều này chưa đựơc chứng
minh bằng thực nghiệm), trong khi đó sản phẩm của mas1’ lại làm giảm bớt các dạng trung
gian mannopine và mannopinic acid. Sản phẩm của gen ags sẽ làm lacto hóa mannopine
thành agropine. Mannopine và agropine cũng có thể lactate hóa thành agropinic acid
(Dessaux và ctv, 1998). Bởi vậy, các khối u được tạo ra bởi Plasmid Ti kiểu octopine có
thể tạo 4 loại octopine và 4 kiểu thuộc nhóm mannityl opine.
2.3.2.2 Chức năng của các gen vir
Vùng vir trên Plasmid Ti có khoảng 25 gen được nhận biết trong 7 đơn vị phiên mã là:
virA, virB, virC, virD, virE, virG, virF (Nguyễn Đức Lượng và ctv, 2002) và vùng này có
kích thước khoảng 30- 40 kbp (Riva và ctv, 1998). Những gen vir này mã hoá cho các vai
trò như: nhận ra tế bào thực vật, tấn công vào tế bào thực vật, gia công đoạn T-DNA,
chuyển nạp đoạn T-DNA và có lẽ có cả vai trò trong sự xâm nhập của T-DNA vào tế bào kí
chủ.
Các gen vir có vai trò trong việc nhận diện ra vết thương của cây thông qua dấu hiệu
hoá học tiết từ vết thương. Các tín hiệu hoá học từ vết thương ở tế bào cây chủ tạo ra được
nhận biết trước tiên bởi VirA protein, rồi đến VirG protein để làm kích hoạt các gen độc
khác ở vùng vir, tạo ra các protein cần thiết. Gen vir được kích hoạt tối đa ở pH acid với sự
hiện diện của các hợp chất phenol như là acetosyringone (AS), chất mà được giải phóng khi
tế bào cây bị tổn thương (Ziemienowicz, 2001). Biểu hiện cơ bản của gen virA tổng hợp nên
protein nằm trong màng tế bào, protein VirA đáp ứng với sự trao đổi chất của vết thương
của cây. VirA có thể đáp ứng nhạy cảm với sự thay đổi của môi trường. Với một nồng độ
AS thích hợp VirA có thể được kích thích bởi đường, các opine khối u hoặc amino acid
(Zhu và ctv, 2000; Ziemienowicz, 2001). Protein VirA sẽ tự phosphoryl hoá, sự tự
phosphoryl hoá này sẽ làm protein nội bào VirG được phosphoryl hoá bởi aspartic acid còn
lại sau khi VirA tự phosphoryl hoá (Jin và ctv, 1990) và kích hoạt sao mã cho tất cả các gen
vir. Các promoter của gen vir có kích thước khoảng 12bp trong trình tự “vir box” (Winans
và ctv, 1987).
15
Các gen vir có vai trò trong việc tạo sợi đơn T-DNA trong vi khuẩn và đưa sợi đơn T-
DNA vào trong tế bào cây. Các protein được mã hoá bởi gen virD và virE thực hiện chức
năng tạo ra phức hợp T-DNA. Protein VirD2 là một endonuclease, protein này sẽ cắt T-
DNA tại vị trí nucleotide thứ 3 và thứ 4 trên trình tự bờ vai 25 bp để tạo ra phân tử sợi đơn
T-DNA và liên kết đồng hoá trị với đầu 5’ của sợi đơn T-DNA. Protein VirD2 được tinh
sạch từ oligonucleotide sợi đơn mang các trình tự bờ vai ở vị trí tương đồng (Zupan và ctv,
1996; Deng và ctv,1998). Protein VirE2 là một protein gắn trên sợi đơn DNA , nó sẽ bảo vệ
T-DNA khỏi sự phân giải của
các enzyme nuclease trong tế bào cây (Deng và ctv, 1998), protein VirE2 là protein chiếm
số lượng nhiều nhất. Protein VirE2 và VirD2 mang trình tự định vị nhân, trình tự này giúp
thúc đẩy sự hấp thu phức hợp T-DNA vào nhân. Hai sản phẩm của gen vir khác cũng được
cho là có chức năng trong việc tạo gia công T-DNA là: VirC1 và VirC2. VirC1 đã được
thấy gắn kết vào vùng “overdrive”, vùng này nằm gần bờ phải, và bởi vậy giúp tăng cường
sự cắt T-DNA ở vị trí bờ vai của VirD1/VirD2 endonuclease (Gelvin, 2003). Một số tác giả
khác cho rằng VirC1 và VirC2 không cần cho tạo sợi đơn T-DNA nhưng khi vắng mặt hai
protein này thì hiệu quả chuyển nạp T-DNA vào cây khá thấp. Do đó đề nghị rằng chúng có
chức năng trong việc xuất T-DNA (Zhu và ctv, 2000). Ngoài ra, Protein VirD2 được cho là
có chức năng trong sự hòa hợp T-DNA, bởi nó gắn vào đầu 5’ của T-DNA, đưa T-DNA
vào nhân tế bào và lưu lại cùng với T-DNA trong các bước hòa hợp. Hai giả thuyết về chức
năng của protein VirD2 trong sự hòa hợp T-DNA đã được đề nghị: VirD2 hoạt động như
một integrase và VirD2 hoạt động như một ligase (Ziemienowicz, 2001).
Hệ thống chuyển nạp T-DNA được mã hóa bởi operon virB, operon này mang 11
gen. Sự chuyển phức hợp T-DNA dựa trên chiên mao (pili) do operon virB mã hoá và đột
biến ở bất kì gen nào trong số 11 gen của operon này đều làm mất khả năng tạo pili và tạo
khối u và tạo khối u (Lai và Kado, 1998). Các protein VirB đều khiển tạo chiên mao và
VirB2 là tiểu phần chính của chiên mao này. Hai protein VirB là VirB4 và VirB11 có hoạt
tính ATPase và được cho là cung cấp năng lượng cho việc xuất các tiểu phần protein khác,
cho vận chuyển T-DNA. Hệ thống VirB đưa T-DNA tới tế bào chất của tế bào cây, nơi đây
các bước cần cho chuyển T-DNA vào nhân và hòa hợp với DNA của cây được thực hiện
(Zhu và ctv, 2000).
16
Hình 2.2. Mô hình chuyển nạp T-DNA từ tế bào vi khuẩn vào tế bào cây
(nguồn Zhu và ctv, 2000)
2.3.2.3 Cơ chế lây nhiễm
Vi khuẩn Agrobacterium tumefaciens sống phổ biến ở xung quanh và trên bề mặt rễ
cây. Vùng mà vi khuẩn sống gọi là vùng rễ, nơi mà vi khuẩn tồn tại nhờ việc sử dụng chất
dinh dưỡng do mô rễ tạo ra. Vi khuẩn chỉ xâm nhiễm vào cây khi cây bị tổn thương do
nhiều nguyên nhân khác nhau. Trong đều kiện tự nhiên, các tế bào vi khuẩn di chuyển đến
vị trí vết thương nhờ các dấu hiệu hoá học. Đều này có được là do đáp ứng giải phóng
đường và các thành phần phổ biến khác trong rễ. Tuy nhiên, các chủng vi khuẩn mang
Plasmid Ti sẽ đáp ứng mạnh hơn bởi vì chúng xác định các hợp chất vết thương (hợp chất
phenolic) như acetosyringone. Chất này có tác dụng rất mạnh dù ở nồng độ thấp (10
-7
M).
Bởi vậy, một trong những chức năng của Plasmid Ti là mã hoá các thụ thể (receptor) nhận
biết các chất hoá học. Những thụ thể này nằm trên màng tế bào vi khuẩn và có thể giúp cho
vi khuẩn nhận biết ra các vùng bị tổn thương. Acetosyringone đóng vai trò quan trọng trong
tiến trình xâm nhiễm. Ở nồng độ cao (10
-5
– 10
-4
M) hơn nó sẽ kích hoạt các gen vir trên
Plasmid Ti (Valentine, 2003 )
Sau khi được kích hoạt, các gen vir sẽ đều khiển quá trình tạo sợi đơn T-DNA. Quá
trình tạo sợi đơn T-DNA được thực hiện trong tế bào vi khuẩn và do các protein VirD1 và