Tải bản đầy đủ (.pdf) (28 trang)

Luận án phó tiến sỹ Chỉnh hóa một số bài toán ngược trong khoa học ứng dụng

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (4.52 MB, 28 trang )

BO GIAO ])t)C vA 1);\0 T~O
[11)1H()C Qu6c cIArl jANH PH6 H6 CHIMINH
TRUc)NCD~I HQC KHOAHQC H,! NHlt N
a
~~I:&'~~
a
N
C
Tr
Y
'~
N
. ,.
(
'r'
)l
\T(i T
A
"
M
",1\ 1:', ,,'_.Tn ,
D
CHiNH. UO,\ l\iQT 86 BAI ToAN NGtf<1C
TRONe KHOA HOC rfNG Dt)NG
Chuyennganh: loAN GJArItCH
\13 s6 01.01.01
II
TOM T£(TLu.~N AN
Fh6 Tie'nSIKhoahQcToan Ly
Thanh ph6116 ChI Minh
II


- 1996-
~} ) I.';-
"J,' ~
Lu~n ~n n1iydu'Qchean thanh t~i Khoa Toh - Tin h9c II
Tru'CJngBl}i hQc &boa hQc TV lJl'Mn Thanh pho' hI6 Chi Minh
IIiIo
Irii
Netti1i hu'OIH~ d1in :
'II
"
iii
GS TS J:)~NG DINH ANG
II
rI/lI
II1II

l1li
'II
II
II
Ng1f(Y]nhan xet 1 :
II
III
a
II
a
III !II

~i1j hh1tnxet 2 :
CI

II
Cd Quan nJU)Hxet :
II'
Ie
'III
III
Ii! =
II
Lu~n ~n se du'<;fcbaa v~ tq,iH9i D6ng Chill Lu4n an Nh;) Nll'OChqp
tq,iTru'CJngDq.ihQcKhoa h9CTv Nhien Thanh pho' H6 Chi Minh VaG
hk~ giCJ ~ ngay thclng ~ Ham 1~96. '
III

III
IJI
C6th! tlm hilu Lutjn dn tQi cdc tllltvifl1 : !:I
-' Tnto/'lg Dqi h9C Khan h9C T~(Nhien Thc'rl1hpluJ'H6 Chi Minh
- Khaa H9c nfng fir]) Thanh ph/f H6 C?llMinh
aID
nO GIAo D~JC vA.BAo L'}O
D/\I HQC Quc5c CIA THANH PH6 HO CHi MINH
TRU<JNCDAI HOC KHOA HQC TV NHlt N
~"'r"r"'r"'r'"
/
NGUYEN C(1NG TAM
cHiNn HOAj\U)Tso nAI ToAN NGU<;jC
TRONG KI-IO;\H()C (fNG D\JNG
Chuycn nganh: ToAN GIAr TfCH
Mil s6 : 01.01.01
, ,I .,

TONI TAT LUr'~N AN
~h6 Tien sl Khoa hqc Toan Ly
Thanh ph6 H6 Chi Minh
- 1996-
f'
Lu4n an n~y du<;1choan thanh t~i Khoa Toan - Tin 119C
Tnfong D<~ihQc Khw bQc Tlj N11ienThanh ph6H6 Chi Minh
Ng!-!QjJilltjn~ dKI! :
GS TS DANG DINH ANG
~-IDi(jUthill!-,TIiLLl
~gtiotllh;!11_'!fcL~_l
Cd (Juan Itlliin xet :
LUi)n illl se dlNc bao vi!:tqi HC)iDdng Cbi(m Luqn an Nhii Nltdc bqp
v,"iTntongD~i hqc Khoil hQc 1'11Nhien Thanh pIle)Ho Chi Minh yito
hie __gio_ngay___thilng_nam 1996,
Co thE lim hilu Lu4n c!ll'~Iiede Ilzz(vifill :
- Tn((/ng Dgi Iz~)c FI.hoa h'lc IV Nhien Thell/h 1711()'JJ(3 Chi Minh
- Klzoa H,?e Tllng Hq'p Thanh pMJ'H(5Chi Minh
MO 8AU
Trong Khoa hl)c ling d\Ing, nolI du khao sat hili loan nglic;1cdii xullt
hi~n tit' lau, Coo de'n nhung nam 60, d6ng thdi VOlvi~c phat tri6n cac c6ng C\l
loan hQC,cac hiii loan ngu'<1ckh6ng chino dii du'<1ccac nha loan hl)C tren the'
giOi khao sat m(Jt cach sau r(Jng ma lieu bi6u lil t:ac c6ng trinh clia Tikhonov,
Lavrentiev, Lions, Tit'thdi gian do de'n nay, cac bai loan ngu'<1ckh6ng chino
ngay cang du'<1cchu 9 khao sat m(Jt cach r(Jng riii do nhung nhu du xullt pilat
tit'th,,'c te' cua khoa hl)c ling d1!ng, d~c bic$ttrong Ky nghc$,Y hl)c, V~t Iy Oia
du,
Trong Lu~n an, chling Wi khao sat m(Jt s6 hili loan nglt<,1cco a~ng
trong do r lit au ki~n nh~n du'<,1c(qua quaIl sat, do d~c), h9 th6ng A la mOtphuUng
trinh d;;toham rieng VOlcac di~u kic$nbien tuong ling va v ill du kic$ndn tlm.

Trong lu~n an, chung t6i khao sat mQt s6 bili loan Cauchy coo phu'ong trinh
Poisson va Laplace trong doc mi~n khac nhau ct'Ia R2 va RJ. Nhil'ng bili loan nay
co 9nghia qua" tn,mg trong ling d\Ing, chAng h;;tnnhu' trong V~t 19Dja du, VI
nghi9m ctta cac hili loan nay se du'<,1cxac dinh khi ta hic't di~u kic$nDirichlet (hay
Neumann) tren loan bien mi~n khao sat nen vic$cgiai hili loan Cauchy coo
phuong trInh Poisson hay Laplace du'<,1ccoi nhu bili loan tlm du kic$nd~u vao v la
di6u ki9n hien Dirichlet (hay Neumann) khi bic't du kic$nd~u ra F la di0u ki~n
bien CalJ<.:h'y(trcn mQt ph~n bien) va hc$thi')ng A chino la phut1ng trInh Poisson
hay Laplace tuUng (tng, hong D,a V~( Iy, hili loan nilYc6 9 nghia th\l'cto vlugu'\fi
ta thuong khang (ht; do d;;tc gia tri tntong trl)ng lifc, tr9ng 1\l'caj thll'ong hay
gradient dw n6 tren loan bien m't chi c6 th6 do tren mOtph~n bien ma thai,
- I -
!-)u vilO
I
H th6ng
!-)u ra
v
F
A
Phdn I chung t&i xet 3 ba.i toin Cauchy cho phtiong trmb Poisson trong
dl3 troll don vi Dc R2.trong nU'am~t phAng tren p+ c R2. va. trong mta kh8ng
ih
glaD tIeD R\ ; v(Ji dfl ki~n Cauchy (u. c7v- d~o ham theo htidng phap tuye'n
ngoai tren bien cua mien) du'<;1ccho tren mQt ph~D bien cua mien.
CI}th~. chung t3i Ian lu'<;1tchuy~n dc ba.i toan kh3.o sit ve vi~c giai mQt
phtiong trmh rich phh Fredholm lo~i mQt :
Av=F
(1)
trong d6 A la. mQt loan tU'A:H
~ Hi. v(JiH. Hila bai kh8ng gian Hilbert. Trong

tung bai toan . H. Hi HI.cac Hong gian Hilbert khac nhau.
Cdc dOnggdp mdi cua Lu4n dn Ii :
1) Chung minh dti<;1cding Ala. toaDto' tuye'n tinh lien tvc tu H vao HI .
trong d6 H va. HIla. hai khong glaD Hilbert (thay d6i rhea tung bai loan ).
2) Chung minh du'<;1cding ve' pHi F cua phu'ong trmh (1) tbuQc Hi ; (}
day F du'<;1cxac dinh tif cae dfi' ki~n eho tru'ck,
3) 86i vai hai bai toan san cua phan I chung toi da:du'a ra du'qcdanh gia
d6i voi chuan ~IIH >HI
Trong phan II chung toi xet bai toan Cauchy cho phu'ong trmh Laplace
trong t~ng g6 gh8 cua R3nhu'san
D = {(x,y,z):-<X) < x,y,< <X),0 < z < ~(x,y)}
vdi <\IthuQc Wp CI(R2),
Bli loin la llnl ham di~u hoa u trong D. li8n tl}clrong b. vdi u. u. . uy.
u, cho tru'oc tren ph~n bien cua D dti<;kbien dieD b(}im~t Z =$(x.y) .m.i to<ln
-2 -
nay la m5 hlnh R3cua bai toan da:du'qc khao s.h (xem D.D.Ang. D.N.Thanh &
V.V.Thanh: H Regularized Solutions of a Cauchy problemfor the LAplaceequation
in an irregularstrip", :Tournalof integral equations and Applications, Vo1.5, N2.4,
(1993), p,p. 429_441),
B~ng phu'dng phap Green va ly thuye't the' vi, chung t51 da: du'a du'<1cbal
toaD Cauchy d teen v~ phu'dng trlnh tich phftn d~ng tich chip san dfty d6i v<'l an
ham v(x,y)
=u(x,y.O) (la di8u ki~n Dirichlet teen bien z=O).
1
(~v)(x.y) = F(x,y) ; V(x,y) E R2 (2)
k
trong d6 G(x,y) = (Xl + yl ~k2)
"
Ie 13.h~ng s6 du'dng du l<'n. tho a
Ie> 4>(x,y) ,

V(x.y) E R2
Sd dl}ng phu'dng phap chlnh h6a Tikhonov (xem A.N.Tikhonov and
V.Y.Arsenin : Solutions of ill-posed problems. Winston. Willey, New York,
(1977», chung toi xiy dlfng mQt phu'dng trlnh bie'n pMn (phu'dng trlnh chInh
h6a) (00) :
~ Ve =Fe
(3)
Trong d6 bai toaD too nghi~m v=v" da phu'dng trlnh (3) la bai "toaD
chlnh, nghia la
i) T8n t~i duy nha't v"thoa (3)
ii) v" phI}thuQc lien tl}c vao Fe
E>6ngg6p quan tn;mg khac trong Lu~n an Ia chUng t5i dii dauh gia du'<1c
5ai 56 giU'anghi~m chlnh h6a v" neu teen so voi nghi~m chinh xac v cua phu'dng
trlnh (1)
-3 -
Cl}the la ne'u sai s6 giiia dii ki~n dod."eF£va dU'ki~n ehinh xac F la &
,nghlala
~F,-FII< Ii
(4)
thl eh11ngt8i eh1fng t6 du'<;1ela sai s6 giiia nghi~m ehlnh h6a v£va nghi~m chinh
xacv (Vdi~iathie'ttrdnthichh<;JP)C6b~C,fS hay
[l{~)r;(0<&<1)
nghlala IIv£-vll < c,fS (5)
II v vll < c[tr{~)r
hay
(6)
trong d6 h!ing s6 du'dng C kh6ng phl} thuQc S Ta chuiln 11.lIl1y trong cae kh6ng
gian tu'dng 1fng .
Hdn the' niia, ehl1ng t8i thi~t l~p dU<;1f;thu~t roan Giai tlch s8. Cl} the; nhu'
sau:

a) £>6ivdi cac bar roan khao sat trong phh I, chung toichd'ng Minh
du<;1erhg v.chinh la diem b1t dQngduy nh:ltcua mQtroan ttl'co thieh h<;Jp.Do d6
de dang dy dvng mQtthu~t roan l?p M tinh xa'p xl v£. O9i v£(rn)la budc l~p thd'
m .Chung toi da dua ra dU<;1cdaRb gia sai s6
Iv,(">-vl< C,k'" +C~ (7)
C£ 13.h!ing s8. phl} thuqc s. kh8ng phl} thuQc m . k E (0.1) 13.h~ s8 co. Hdn niia
ne'u chQn budc l~p t6i thieu m=m. tIll chung t8i thu du'<;JcdaRb gia sai so'
~v}",) - vii < (1 + C)J;:
(8)
b) £>6ivdi bai roan trong phh II, chung toi du'a ra du'<;1ccong th1fctu'Clnp,
minh tinh v. theo dU'ki~n do d~c F£ thong qua bie'n d6i Fourier (hai chi~u) thu~II
va ngu<;1C.Vdi gia thi6t v du trdn (v E Hl(R2» chung t8i thu du'<;JcdaRb gia sai s6
-4-
1\v vll < C[~;)r
I"~
trong d6 h~ng s6 C chi ph'} thuQc vao Ilv~lh'11)
Lie ke"lqua cbillh CIIaLlI~ll all (hi<,lccong b6 trong [1] .[2] va se
c!til/ccong b6"lrong [:\J.[4J.[SJ"
tJ
-5 -
PJIANM6r
cAc sAI loAN CAUCHY
CHO PHUONG TRINH POISSON
I. BM roAN CAUCHY CHO PHtJdNG TRINH POISSON TRONG HINH
TRON BdN VI :
1.Bdi loan
G~i
D =I(X,Y):X2+l < I}
15 = I(x,y): X2 + y2 ~ I}
Tlm ham u = u(x,y) th<Saphu'dng tr1nh Poisson'

!!.U= f trong D (9)
u E C2(D)nC1(15)
va di\!u kic$nCauchy du'<1ccho tren mQt phh bien ct1a D nhu' sau :
U(CO50,5inO) = uo(O)
~:(COSO,5inO)=Ul(0) O«}<a (10)
vdi f cho tru'dctrong D; Uo . III cho tru'dc tren r = {e'o:0 < 0 < a} .a
t3u
cho tru'dc Q< a < 21f kj hic$u
- la d~o ham theo hu'dng pMp tuyen
. t3n
n
=(c~O ,sinO) tren t3D hu'dngra ngoai d5i vdi D
2. Thitt l/jp phr/dnll lrinb deb phlin
iJu. . t3u
Ch9n v(O)
=- (cosO ,5mO) ,Q ~ 0 ~ 21f 13.an ham, () d~y - la
t3n t3n
d~o ham theo hu'dng pMp tuyen ngoai tren vong troD ddn vi 13D.
- 6 -
B~ng phu'dng phap Green chung toi du'a bai toaD (9), (10) v~
phu'dngtrlnh tich phan Fredholm lo~i mQtd6i vdi /inham vnhu'sau :
2r
I
I - B
I
J v(/)ln2sinTdl::: F(O)
a
vdi F(O) :::1T[U(O)- uo(O)] -
Ilit (I) In21sin I ~ 0 Idl
+ ~ Iff(~, 1}){21n[(cosO - ~)2 + (sinB - 1})2] -In(~ 2 + 1}2))d~d1}

D
( 11)
(12)
3.Khiio sat phlidnf!. trinh tfch vhlin-,-
Rtf di 1.1 Ne'u lIo,U1E L2(0,a) va f E L2(D) tIll FE L2(0,a) vdi
F xac dinh CI(12).
I
1- 0
I
';jOE(O,a). hamt~ln2sin2 thuQcL2(0,21T).
. 2r
r
I-O
j
£)~t (Av)(O)::: J v(/)ln2sinTdt
a
thl ta c6:
Bil tfi 1.2:
(13)
Ml!nh tfi 1.1: Toan tU'A:L2(a ,21<)~ L2(0, a) la loan ttl' tuye'n tinh lien t\lC .
3. Chinh hOa nghiDm:
Xet phu'dng trlnh
Av ::: F (14)
vdi FE L2(O,a) cho tru'de va toan tU'A xac dinh CI (13). Nghi<$m v tlm
trong kh6ng gian L2(a ,21T)
Chung ta chlnh h6a nglll~m cua phu'dng trlnh (14) theo phu'ong
phap Tikhonov.
- 7 -
Vdi P > 0 va FE L2(O.a)
vfl E [}(a,2TC) saoeho

eho tru'de x~t bai loan : T1m
P(\'p,ffJ)+<AVp,Af!J> = <F.AffJ> ,Vf!JEI!(a,2f'l)
(15)
trong do ( . , .) va <.,. > Ih lu'~t la tieh vo hu'dng trong L2(a.2TC) va
L2(O.a). Chung ta ky hi~u cae ehuin tu'dngU'ngla 11.11 va 11.11 .Ta co ke't
H HI
qua:
Dillh Iv 1.1: Vdi m6i P > 0 va FE L2(O.a) phu'dng trlnh (15) co cluy
nha't mQt nghi~m vp E L2(a.27r) , hdn m1a vp phV thuQc lien t1}c vao
FE L2(O.a).
Ghl sU'Vo13.ngill~m chinh xac ella phu'dng trlnh
Avo =Fo
thoa di~u ki~n : T6.ri t~i v E L2 (O.a) sao cho
(vo.ffJ)=<v.AffJ> , VffJEL2(a.27r)
(16)
(17)
Killd6 ta co
Dinh It 1.2:
GiasltF.FoEe(O,a) thoallF-Foll <Ii vavo thoa
HI
(16) ,(17). G<;>iv, lil nghi~m da phu'dng trlnh bie'n phan (15) rl'ng vdi
p =£ thl ta co daub gia
livE - VO~H < Mii
M=C+I~U~.r
(18)
trong do (19)
5. Phlidnf!. IJhti~ s(J:'
XtSt phu'dng trlnh bie'n phan (Ii > 0) :
£(v.,ffJ)+<Av AffJ> = <F.AffJ> ,VffJEL2(a.27r)
(20)

hay tu'dng du'dng
- 8 -
1>1' +;\*;\1' =;\*r
F. B
(2\ )
ludo
I' =\' -n.
(
1>1' +;\*;\1' -;\*r
)
F. F. f' F. F.
v(fjfJ > 0 sc ch9n sau,
(22)
V~y vI>=T vI>v8i T: L2 (a.,27t) ~ L2 (a.,27t)
du'(jcxac djnh nhu'sau :
Tv= v-p(ABv-A *F)
(23)
() day
, *
AB =;E.ld+A A ,
vii ld - to<ln tarddn vi trong L2 (a.,27t)
Ta co ke'l qua sau :
(24)
Dillh Ii 1.3:
I>
V8i P=(E+ IIA If Y thl T Iiiphep co trong L2 (a.,27t)
He Qua1.1: 'liE:>0 cho tmac, phu'dngtrlnh (20) ho~c (21) co nghi~mduy
nha'l VBE L2 (a.,27t)
Ta linh VI>bAng phu'dng phap xa'p xi lien tie'p
(m) -

T
(m-I) -
12
VB - VB m - , '0"
v~O) E L2 (a 27t) tily y
Taco
(25)
,,~m)= (/- PEl v~m-l) - pA *(A 'J~m-I)- F)
v8i fJ nhu'trong Djnh Iy 1.3
(26)
Mellh d~ 1.2:
Gia sarv~ thoa (16), (17). Khi do sai s6 giii'a v~m) va vo 13
Il
vlllll - v
II
< (' kill + M r;
I> 0 /}ra 21t) I> v'<'-
(27)
- 9 -
IITv.(0)-". (0)11,
d da C = L(a,2") ,
(
28
)
Y . I-k '
k - h~ s8 co eua anh x~ co T ; (0 < k < I) va M de djnhb"l (19)
Ml!nh dO1.3:
, ~f)
ChQns6tVnhl~nm. > Ink
Bat v = v (M,) khid6

.
Il
v - VoI, < (1+M)JE
, ilL(a,l )
(29)
(30)
Cilu tb.ie!!.;.m.la s8 bd&:l~p t8i thi~u di ta e6 danh gia teen.
MQtph~n ket qua eua mvc nay dii ddcjcc6ng b6 trong [I] va[2].
II. BAI ToAN CAUCHY CHO PHVcJNGTRINH POISSON TRONG NUA
MAT PHANGTRtN:
1. Biz; loan:
GQi
p+ = {(x,y): -oo<x<oo,y>O}
]5+= {(x,y): -oo<x<oo>y~O}
Tlm U E Cl(P+)nC2(]5+) .Uy E C(P+)
Au = f trong p+
u(x,O) = uo(x)
Uy(x,O) = UI(x)
thoa
(31)
"Ix E 1= (-1,1) (32)
u ehinh qui d v8 eung. nghla Iii.t6n t~i h~ng s8 dddng B sao el1o
lim sup u(x,y) = U'"
R-++a> x'+,,'-R'
y>o
B
IVu(x,y)\
~ Xl + l
'V(x,y) E P+ vhl + l duMn
(34)

- 10 -
~ diiy Vu - gradient cua u.
f chotn10ctrongr .Uo,u. tho tru'<'1ctrong (-1.1) ; Uy- d~o ham rieng cua
u theo y .
2. Thitt llip p1uh1nlltrinh tlch phlin
Ch9n v(x) =Uy(x,O), x E J=R\I= {x:~1 ~ I} lam in ham.
B~ng phu'dng ph3.p Green, chung tBi du'a bal to~n (31).(32). (33),
(34) v8 phu'dng trlnh tich phan Fredholm lo~i mQt sau dAy d6i v<'1ilin ham
v(x)
v<'1i
Jv(~)~- ~Id~= F(x)
J
F(x) = 1T(Uo(x) - u,.,)-
Ju1 (~) lntx- .;Id.;
-I
- ~ If 1(';",) I {(x- .;)2 + ,,2 ]d~d"
(36)
(35)
3. Khdo sat phJif1n6, trinh tic" phlin
i)
ii)
Hi)
Gi:lthie't:
UO,UI E L2(J)
.1=(-1.1) (37)
f ~ L~(P')
={rI[II'« ,.)f'«, .)<1<}. <w} (38)
vdi 1l(.;",)=(I+I.;I+I"r2l1; () >0 chotru'&
v EL~(J) = {v:[ p(~)v2(.;)d.; < cO}
voi P(~)=(1+1.;~2

(39)
- 11 -
Ai! 1.3:
Voi
e>0 chotniOc ,-1<x< 1 ham If'x:p+ ~p
~n[(X-C;)2+1]2]1
If/Jc;,1]) =
{
~
}
I+II
1+[(X-C;)2 + 1]2]
tbuQc I} (r) . Hdn nua t3n t'l-ihJing 86 du'dng Bt =Bl (0) saD eho :
Ilv/JL,(P')~B1 'l/xEI
BUdn 1.4:
Voi cae gii thi~t (37), (38) ta e6 FE L2(I), (Jdily F xac dinh theo
(36).
Mellh di 1.4:
VvEL2(J) ; p(x)=(1+lxI)2
B~t (Av)(x) = Jv(C;)1n!x-c;ldC;
(40)
J
Khi d6 :
A: L~ (J) ~ L2(I) 13.loan t:U'tuy~n tinh, lien t1}C.Hdn m1a
11.411~ 6
~':fnh}'f)a nRhMm:
Phu'dng trlnh c6 d'l-ng : Tlm 'liv E L~(J) tho a All = F
r FE L2(I) eho tru'dc va toan td' A de dinh theo (40) trong
Vdi Ei> 0 xet phu'dngtrlnh bi~n philn
tu'dng du'dng

hay Ia
vC1i
liV. +A'Av. =A'F
£v. +A'Av. -A'F = 0
v, =v, - P(EV, +A'Av. -A'F)
/3 > 0 se ch<;msau
(41)
(42)
- 12 -
V~y Vs =T jIB VOlloan tifT du<jcdinh nghTanhu sail:
2 2
T:Lp(J)~;Lp(J)
T,,=v-p(Asv-A"F)
i'1day
As
=E.ld + A" A
va Id - loan tu don vi trong L~( J)
Dillh Ii 1.4:
VoiP= E 2 thi T 1aphep co trong L~(J)
(H36)
(43)
(44)
He Qua1.2:
\::IE>0, \::IFE L2(J) cho tru'oc phuong trlnh (41) co nghi~m duy nhKt
2
vsELp(J)
Giii su rnng phuong trlnh
Avo =Fo
co nghi~m chinh xac Va san cho t6n t':li v E L2 (I) thoa
(vO,q»L~(J)= (It; Aq»Ll(/) \::Iq>EL~(J)

(45)
(46)
Ditlh IV1.5:
Giasu va thoa (45), (46) va !IF- Fo 1~1(/)< E khi do
lIvE- Vo II~(J) < M F
i'1 day Va -nghi~mciia phuong mnh bie'nphan (41), cfing ill di~m b1lt
[
2
]
1/2
. 1+ 111,111
~? . L(l)
dQngcua T, M = 2
5. PIll/dill!vM,} sri:
Ta tinh jIB bang phuong phap xa'p xi lien tie'p
,(111)-
7
' ,(111-1) -
I
"
Is - IE m- ,-,
(0)
1
2
(J)
, ,
Vs E 'p tHYY.
- 13 -
6
Chon

jJ
::: thl
. (6+36)2
r- 62 1
v;" L i. (E ~36)T 1';",.1)- (c +C36)2A'(Av~" ) - F)
Khi d6 ta co hai mc:nh M (I ') v~ 1.6) IIMnp,ht vai hai mt$nh d~ 1.2 va 1.3 d
Inl)CI. MQI phau k~'lqua Clla lIJlle !Jay se ch(yc caug b6 trou!?,131
.
(48)
Ill. BA.ITOA.NCAUCHY CHO PHUONGTR1NHPOISSON TRONG NUA
KHONGGIANTR.t:N:
Llld{.O!I.T1':'
f)~t
R;::: {(x,y,z): -00< x,y< OO,Z > a}
J{3::: {(x,y,z): -00< x,y<oo,z z a}
Q::: {(x,y): X2 + y2 < I}
T1m ham u E C2(R;1)nC(R;), UzE C(R/) thoa
t>.u:::f trong R;
(49)
vdi dil ki~n Cauchy du<;1crho tnf(1c tren dla Iron ddn vj et1a m~t phang z==O
u(x,y,a)::: uo(x,y)
11,('1",)',0):::U,(x,y) V(x,y) E Q (50)
trong d6 f cho Iniac trong R; ; uo,u. cho tru'<'Jctrong Q ; IIz d~o ham rieng
nla u theo z .
II chlnh qui d v() rUng. nghia la
r 1
l~d ,,+~+~)lI(x,y,z)l
j
:::a
L z>o

(ii) T3n t~i hhg s6du'dng C sao cho
I
vu(x,y,z)I:<o: C v<'JiX2 + l +zz dtl Wn
_,,2+y2+Z2
(i) (51)
(52)
2. Thf.J.11!1JfjP,1!l!.1idrlf!.trinh tfch phtin:
. 14 .
Ch<?n v(x,y) =uz(x,y,O);
(x,y) E Q = Rz \0= {(x,y): XZ+yZ 21}
lam an ham.
Bhng phtidng phap Green. chung t8i dtia bai toan (49). (50), (51).
(52) v~ mQtphu'dngtrlnh tich ph~n Fredholm lo~i mQtdo'i vdi :in ham v(x.y)
nhu'san:
II
v(~,17)d~d17
J. Z Z F(x,y) . (x,y) E 0 (53)
Q (x-~) +(Y 17)
II
UI(~ ,17)d~d17
F(x,y)=-21fUo(x,y)- J
a (X-~)Z+(y-17)Z
-HI f(~,17,t;)d~d1]dt; (54)
R?J(x-l;)z+(y-17)z+t;Z
vdi
3. Khiio sat pbrldnll. trinb dcb phlin:
Gia thi€t:
(i)
(ii)
2

Uo E L (0) (55)
Ut bj ch~n trong Q (56)
f EL: (R) 0 {fo Iff p( x,y ,z) f' (x,y,z )dxJydz < ro}
. vdi P(X,y,z)=(l+Jxz+i+zzY (57)
(Hi)
Bil di 1.5:
V(x,y) E 0 tich ph~n soy rQng
II
dl;d17
J(x,y) =
Q J(x-~)Z +(y- 17)Z
hQit~ va J(x,y)::;; 41f
Bil di 1.6:
- 15 -
Xet ham 'l/x.y:Q -) R+
(x,y) E 0 Ia tham s5
I
Ij/xr<I;, 17) = r: 2. z J 2 2' vII-ex-';) +(y-11) (x-';) +(Y-17)
fhl '(1',1E L2(Q). Hdn m1a
~
II
11
2 2- ~x +Y
VI'. ~ 21r In
x;, Lt(Q)
I
J2 2
- x +y
!1ff !li1.7;
Xet ham x.,,:RJ -)R+ ;(X,Y)EO lathams5

I
X.,/c;,17,C;) =
{
J 2 2 2
}
J 2 2 2
1+ (x-C;) +(Y-17) +C; (x-I;) +(y-17) +C;
thl X E I} (RJ) .Hdnm1a
Il
x ~2 ~ 1r
(
2+~+ ~lil2
)x" + ."IILt(R;) 2 2
IJ6 atLJl-,,-
B~t F1:O -)R+
F
(
x
)
=
ffJ
If (I;, 17,ola,;a"ac;
"y J 2 2 2
R; (x-';) +(Y-17) +C;
. 2
ncu fthoa (57) thl F, EL (0)
Mff.lllLdiLZ~
Gi;l sU' Uo thoa (55). u1thoa (56) vafthoa (57). Khi do. F xae dj.nh
bdi (54) thuQc L2(0)
Menh di 1.8;

VJi roM 'EL:(Q) =!, II w«, "),' «, ")d91" < 00)
trong do W(';,17)= 1+ J,;2 + 172 (';,11) E Q
- 16 -
If
,,(;;.rt)d;;drt
J)~[ (;1,,)(x,y) =
Q ~(x-;;)2 +(y_rJ)2
Khi do A:L~.(Q) ~ L2(0.) lit loan ttYtllyc'n tinh lien t\le.llon nITa
(
16
)
1/2
11;1lis 1t 3 In -;-
4. Chlnh hOa nehiem:
Phuong trinh (53) co d~ng
Av= F
Leongdo FE L2(0.) cho tru'oc va loan ttYA xac dinh theo (58).
(58)
(59)
Xet phuong trinh bic'npMn LeongL~(Q)
'" '"
EVE+ A AVE =A F
Khido ve =T vevd'itminttYTdulfcdinh nghIanhusau:
2 2
. T:L (Q)~L (Q)
Tv= v-I3(Aev-A "'F)
P> 0 se xac djnh sail
'"
Ae =E./d+A A
/d Ja loan ttYdon vi tTOngL;. (Q). Chung Laco kc't qua

(60)
(61)
Dillh 1i 1.6: VOi 13=
(
E
)
2 thlTJaphepcotrongL~.(Q)
2 16
E+ 31t In

e
Hequa 1.3:
V t:> 0 , V F E L\0.) eho [rudc, phu'Ung trinh (GO) e6 nghii;m tiny nhi;[
2
liB E L (Q)
Bay gio gia stYriing phuong trinh
Avo=Fo
eo nghii;m ehinh xae 1'0san cho t5n ~i i' E L2(0.) thoa
(v().<p)
= (17;;1<p) V<pe L~.(Q)
(63)
(6.n
- 17 .
ddiJy (. ,,) va <.,.>I~nlu'(,1tlatichvBhlf<3ngtrongL:(Q) vaL2(O).
Dinh IV1.7 ~
Gia st!' Votho a (63), (64) va If - Fnll<s .Kbl d6 t6n t,!-ih!l.ng s6
dlfdng M thoa
Il
v - Vo
II

' < M J6
, L,«I)
( 11111'11£,(0) )1\ "
v<Ji /0.,1=l ; ) va v. la diem b:it dQng cua anh x'!-co T dng v<1iG
(t{(c v, Iii nghi~m daphlfdng trlnh bi€n phan (60»
5. Ph"dn~s{l:
B€ til1hdi€m bit dQl1gv. ctia anh x'!-co T chung ta dung phu'ong
phap x;i'pXl lien ti€p
v(",)= T\,(",-I) , m = 1,2"
. .
v;o)E L~(Q) tuy Y
s
Chon
fJ
=-, thl
.
i 16
)
2
l£ +311'21n~
2
(m)_
1
S (",-I) s
A
'
(A
(m-I)
F
'

)
v.
- -
l
' 16
)
2 v. -
l
' 16
)
2 Y.'-
s+311'21n~ &+311'21n~
(65)
(66)
Khi d6 ta c6 2 m~nh d~ (1.9 va 1.10) tu'dngtv nhu'hai m~nh d~ 1.2 va 1.3 J
m1}c1.
MQt phan k€t qua cna ml,1cnay se du'(,1crang b6 trong [4].
(~J
- 18 -
, .
PaW HAl
BAI TOAN CAUCHY CHO PHVdNG TRINH
JI. ' '.,
LAPLACE TRaNG TANG G6 GH~ CUA R3
1. IJAI TOAN
B~t D={(x,y,z):-co<x,y<co,O<z<fS(x,y)}
15= {(x,y,z):-co< x,y< co,O:<:;z:<:;;(x,y)}
vdi 4>thuQc ldp C1(R2)
T1m ham UE C2(D)rC1( D) thoa
.61-1=0 trong D

ux(x,y,9'{x,y))= f(x,y) ,
uA x,y,qj(x,y)) = g(x,y)
uA x,y,qS(x,y)) = h(x,y)
u (x,y,qj(x,y)) = u1(x,y)
vdiJ. g . h . Ul cho tru'dc trong R2.
(67)
(68)
i'
Bay Ia bai toaD Cauchy cho phu'dng trlnh Laplace va nhu' chung ta
da: bitt 111.bai toan kh8ng chInh.
2. THANH LAP PH(j(JNG TRlNH TicH PHAN
Ch9n v(x,y) = u(x.,y,O)lam lin ham (-oo<x,y< 00)
X6t ham Green cua bai toaDDirichlet cho phu'dngtrlnh Laplace
trong nua khong gian tren
G(x,y,z;~,17,0 = r(x,y,z;~,t'/,0-r(x,y,z;~,t'/,-0
- 19 -
v~i f(x,y,z;.;, 1],0 = 1 ~' 1 la nghi~m cd ban
4Jr (x-,;y +(y_1])2+(z-02
crlaph1.fdngtrlnhLaplacetrongkhonggianR3; (69)
Gia thi8t :
i)
:(x,y)= :(x,y) = 0;
v~i r = ~X2+y2 dll l~n
(70)
ii)j{x,y) , g(x,y) , h(x,y) , /lb,y) d4n v~ 0 dll nhanh, nh1.f
- ~ khi ~X2 +y2 ~ ro (71)
\jX2 + l
ill) JI+x2 + y2 .v(x,y) EL2(R2)
(72)
iv) u chinh qui <"vo cung, nghla la t8n t~i h~ng s6 d1.fdngA thoa

A
\u(x,y,z)1 S;
JI+x2 + y2 +Z2
I
Vu(x,y,z)
\
s; 2 A 2 2
1+.1' +y +z
khi ~X2 + y2 +Z2 dd 1~n.
(73)
(74)
B~ng ph1.fdngphap Green, chung ta nhb M<1cph1.fdngtrlnh tich
ph~n sau v~i ftn ham u(x,y,z) va v(x,y)
1 "'
J J
'" zv(t;,1])d.;d1] -
( )
- M-ux,y,z
2Jr-a>-<o[(X ;>2+(y- 'f'J)2+Z2]
- J J O(x,y,z;.; ,I], ~(.;, 'f'J»)1. (.;, 'f'J)d.;d'f'J
-<XHD
- 20 -
+ J J GJ¥,y,z;~, 1],t}(~, 1]»)Ut(~, 17)d~d1]
(75)
ddily
0 0
f (~,tJ)= h(.;, tJ) - f (.;,1]) ,p(~, 1]) - g(.;,1])-;- ,p(.;,17)
0'; (/1]
va G1(x,y,z;~, 1],(J(~, 1]»)= Gt;(x,y,z;.;, 17,(J(~,1]»)
0

-G,(x"v,z;.;: 1],,p(.;,tJ»)- ,p(t;,tJ)
at;
0
-G~(x,y,z;1; ,1], ,p(.; ,1]»)- ,p(1;,tJ) (77)
01]
Cho z ~ ,,(1;,1]) trong (75) chung ta nMndu'c!c phu'dng trlnh tich
phan vdi ftn ham v(x,y)
(76)
~
JJ
,p(.;,1])v(,;,tJ)d.;dtJ -~u x
[
2 2 2
]
~ - I ( ,Y)
211:-<r>-CD(x - t;) + (y - tJ) +; (';,1]) 2
- J J G(x,y, ;(x,y);.;, 1];;(t;, 1]»)f (1;,17)d.;d1]
-aHX>
+
J JG1(x,y, ;(x,y);.;, 1];(J(I;, 1]))UI(1;,17)dl;d1]
i'
3. THANH LAP PHUONG TRiNH TicH PHAN CHAP
1
JJ
zv(~,17)dl;dtJ
Ham H(x,y,z)
=-
]
1/ di8u boa trong
2

[
2 2 2'"
11: -aHX> (x - 1;) + (y - tJ) + z
nd'a khl>ng gian tr~n z> O.
E>~t
A(x,y) =H(x,y,;(~ ,1]»
oH
p(x,y) =-(x,y, ,p(l;, 1]»
on
(80)
(81)
- 21 -

×