Tải bản đầy đủ (.pdf) (24 trang)

Luận án phó tiến sỹ Sử dụng phương pháp số vào một số bài toán cơ học

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (4.8 MB, 24 trang )

- -
I ," ,
I BO GIAO DUCVADAO TAO
I . .' .
I. TRUONG D~ H<;>CT6NG HQP THANH PHO HO CHi MINH
I
TRAN VAN LANG
sir DI)NG PHUONGPHA?56 VAo M9T 56 BAI rOAN CO HQC
Chuyen nganh : Cd'HQCV~TRAN81(HD~G
}riaso : 1.02.21
r
I
I
I
I
J
TOM TAT LU!N AN
Ph6TienSiKhoaHQcTDanLy -
Thanhph6H~ChiMinh
- 1995 -
.'
"
\ LuAnan nay duoc ho3n thanh tai Khoa Toan-Tin hoc
" .' .' . .
Twang D~i Hc;>cT6ng Hqp Thanh ph6 H6 Chi Minh
Ngum hu(mg dAn
- Ph6 Giao su Ph6 Ti€n 81Ng6 Thanh Phong
-Ph6 Ti€n 81Tran Thanh Trai
Ngum nh~n-K-et-l
Ngum nh*n xct 2
Ca quaD nh~n ~ct


Lu~n an se duqc bite v~ ~i H(>idbng cham lu~ an Nha nu6'e
hc;>p~i: Tw<mgD~i Hc;>cT6ng Hqp Thanh ph6 H6 Chi Minh
vao hie giG ,ngay thang flam 1995
C6 th€ tlm hi~u lu~ an ~i cae Thu vi~n
-Tw<mg D~i Hc;>cT6ng Hqp T19.H6Chi Minh
- Khoa Hc;>cT6ng Hqp Tp.If6 ChIMinh .
- Trung Tam Khoa Hc;>cTg Nhien va C6ng Ngh~ Qu6c
Gia Vi~t Nam (Van Phong 2).
LOIN6IDAU
Ngay nay, vm nhUng phuong pMp loan hQc UnIt tmin hi~n d~i, s1,f
pIlat trien ciia may Hnh ngay cang nhanh, fir d6 giup nhung ngHai lam (XJ
hQc c6 the giro quyel mQt htgng 1611cac biii loan cURminh. Bhng Sl!k(}thgp
ba lInh vl!c Toan hQc -Tin HQc -Co hQc, mQt hu6ng mm duqc roo ra cho
nganh Co hQc trong thai dl;\ingay nay - nganh Co Tin hQc.
KhOngngoai ml!c dicIt d6, trong lu~ an n'!\ychUng Wi muOnk~l
hqp hM hoa ca ba Jinh V1!C,de giai quy<!tmQt sObM toan Co hQc~ Ihe.
Chung wi sit dl;1OgmQt sO phuong phap sO nhu phuong phap sai pllan,
phuong pMp pllan ra luan hu6ng Ian ~ mQt chieu, phuong pM.pphan 1"a
thco qua trlnh v~lly, phuong pMp Ga1crkin,phuong pMp phau ttr hituh~n,
phuong phap khai trien ti~m ~ theo tham sO be, de khc\osat 1D<?ls6
phuong trinh trong co hQc.DOngthai, blingngOnngft tl1U~ltolin, chun!~loj
da ma boa thanh chuong trlnh boi cae ngOnngu FORTRAN 4 (chl;\YIr~n
may ffiM 360/501), FORTRAN 77, C, PASCAL (chl;\ytr~n cac may vi
Unh).Qua vi~ tfnh loan tr~n may tfnh, chung Wi diiIdem nghi~m v/1.m.~t
dinh tfnh cua roOhinb, cling nhu m~t dinh hrqng cua phuong phap. Ngoili
ra, c6 mQtsOvan <Th,do duge mOhi dum d~ng mQtphuc1i1gtrlllh loan hl?G
hoWlchinh, n~n chUngWi ding dii kiem nghi~m tru6c, sau d6 mm <TUI!C
Hnhloan Il;\ibbtlgmay tfnh de baa dam bai toan d~t ra, ding nhu 1mgiiUli\
chap nh~ duq~.
Lu~ an gOm4 chuong,

Chlldng 1: T6ng qUaDve mOhlnh va phuong phap giro mQts(fhi\i
tmlh co hQc.
Chlldng 2: MQtsObili loan dao dQngva bi<!ndl,ll1gcUathanh dan
hOi.
Chl(dng 3: MQt sO bai toan dl)ng Il!c hQc mO ta bCliphlfO'ng tdnh
parabolic phi tuy<!n.
Chuang 4: Ml)t sOkel qua Hnh tOtin.
Cuoi C\)ngla phau tai li~u tham khao cUa lu~ ~n. .
'/, I . i-"
";' ,. '
-1- iHLf\:.i[;,~:'-
'
CHlJONGI
T6ng quaDv~m()blnb va pbll<mgpbap giaim()lso bai
toaD cO' bQc
Trong chuang n~y chUngWi triOObay mQt s6 kl!t qua nghien CUll
hen Tht gi6i va hong nuercv~ cac bAiloan d~tfa hong lu~n an. Cling nlll!
mQts6 ktt qua ciiachung wi diid~t dugc so veriOOUngkef qua cii~1.1cgh\
hong va ngoai mt6c. Nhihlg bAitmin chUngtOikMo sat trong lu~ an nay
bao gbm:
1. Bai loan bien d~g eua mQtthanh dan hbi phi luytn dugc nhung
trong moi fIuemgcha:tlong. Cae kef qua n~y, cluing Wida'dl1og!rong [l]l2]
[21][22][23][30].
2. Bai loan thief kt bua may d6ng C9c.Cae kef qua dii dugc dl1ng
trong t24][25][26][27][28] [29]. I'
3. Bai loan dQngl,!chQcbien t,!a I-chien. .Cac kef qua etadugc d~
~p dtn trong [3][4].
4. Bat loan etQngl"c hQcbien va d~i duang. Car kef qua cua mO
h1OObai loan n~y da dugc dilng trong [5][6][7][8][9][10]fll][12]ft3]f14]
[15].

5. Mo h1nh dQng l"c hQct"a phtlang triOOSaint-Venant l-chi~u.
ktt qua ciiabai loan n~y chUngtoi c6ng b6 trong [16] I
6.Bi'tiloan Iantnly~n va khu~h tan ciia ngubn gay ~ nhiem. . MOl
86ktt qua Hnhloan chUngWietatriOObay trong [18][19](20].
7. Bai fOliov~ 51!Ian truy~n ngubn eMt ban trong mr6e dtl6i dat
ChUngwi da tfob loan cho mQt86 fIuemghgp tuy theo IlugngnhiCmban
ban ~u va ngubn0 OOiembO sung hen bien, mQt sO kef qua c6 dtlgc,
chUngtoi ~ ~p Mn hong [17].
-2-
CHUONG II
M~t s6 bai toan dao d~ng va bie'nd~ng cua thanh d~mht}i
I. DiU toan u6n thanh dan hoi phi tuyd!'nnhung trong JI1tli
trtrang long. Trongph1lnn~ychung Wixet sv bien d~ngdla m~\tthanh dun
hbi phi tuyCn c6 kh6i luqng rieng r 0 dlt<;1Cnhunl~hoan toan trong moi
truaog chat long c6 kh6i luqng rieng r I. Xuat pMt h'ily lhuy!t.c6 (liencua
Bemoulli va Euler v~ cac xtfp xi dflDhbi mQt chil!u, lIen CCIsa gia !J,i,!t
Kirchhoff va di~u ki~n lien ket figaro cua thanh, sao chI) ducrngdan hl}j
ntun trong cung mOtm~t phflng,cluIngta rut fa dltqc phuong trlnh (1anhl)i
Euler cua Ihanh d~ctrong mOitruang chao khOng.
(l.1) - .!_-M(x,8'(x») + ,r:(x.0(x»)sin9(x)
-=lex),
dx
dieu ki~n bien
\:.Ixc:(O,L)
0(0) = 0, M(L,0'(L») I blsin0(L) =b:~
Bili toan nhy (lttqc giai bimg each dua v~ d<;mgbien ph:ln. V(~imilt
so ghi thi!t 1Ien cae ham M, g, f va tren cae h~ s6, bang xap xi Gale-rIcin,
chUng wi da ch(tng minh (htqc mOt 86 tinh ch11'tlien quan Mn sl! tOn t~i va
duy nMt lai &jiUeuabili loan (1.1), (1.2). San <16b1mg each rai r~c: hOi1bi'ti
toan theo plHI("Jngphlip phhn tit him ht.'o, chUng toi da chUng minh dtl,~cI;'!

hQi t\! cua lai giai xap xi v~ nghi~m ctla phuClng trinh xuat phat. C:~ckef
qua da dttqc dAng trong [21][22][30].
(1.2)
San d6 chUngwi da xet sl! ph\! thuQcclla lo-igiai vao cac dit kien
cho ban dhu bJ,b2,/,g cila bai toan va da.chti'ngminh duqc sv ph\! lhu<>c
nftylitlien tl!cva dClndi~u,van loi giMduy nh11'1cua bi'tiloan (1.2), (1.3).
II. Bi\i toan boa may dong c<;'c.Co h~ ky thu~t cua bUa may d5ng
c9c c6 t116xcI mQt each t6ng quat nlnt san: M<,\tbUa c6 kh6i htqng ,17/(,
dltqc n6i liCn v6i C9c va de c6 kh6i 1ttqng n72' bhng Ie)xo v6i h~ 86 oan h()j
- 3-
Ct. Gina bUa va c<,)ccon dllgc gaB them mQt bQ giarn cMn' c6 h~ s6 ma sat
Iii bl" Khmmg cach ban d'au (& trlpl.g tllai ct\n bhng) giUa bua va c9C Hi <\.
L1,£cngoai (tuan bean) taG dQng len bua ml la F. G<,)iUI'u2 Ian lugt la dQ
dich chuyen clla bua va C9C.L1,£ccan clla dat sinh fa trong qua trlnh chuy~n
dQng baa gbm l1,£ema sat kilo gifra <hItva c<,)cP'nsd'I1,£ccan 1<1'aucge ~. Cae
I1,£cn'ay n6i chung, phI,!thuQe VaGdQ dich chuy~n eua e9c. v~n t6e Gilacqc
va cac d~c trung cua Mt v.V
Dl!a VaGnguyCn uk rung va, voi cac gh\ thic"t ma sM gifta C~)cvii
<1:1'1.la ma sat khO, c9c drug hly~t d6i, va ch~m gilla boa viI c9c 111lue 1110i,
chUng tOt xet ba giai do~ co the Kayfa tfang qua trlnh dong C9Cnhl1sail:
- Giai do~n rung, day la giai dolpl.elma xtiy ra va chl;\mgilla Ma va
C<,)c,00 h~ dao dQng d\10i taG d\lng eua h;rcngo1\i tu'an hoim F, Ivc ma sal
giUa bua va daL H~ phl1O11gtrinh dao dQng co d~g nlllr saIl:
(2.1) 11z.~+ bt(if.l - uJ+ Ct(u, - It'}) =F
(2.2) ~~- bl(i4 - "2)- CI(UI-'~) = -Frn.<d
De ket thUGgiai <1o~nrung nay chung ta co di~uki~:nv~sl!va ch~m
gillaMa vac9c.
(2.3) '4- 'uz=80
- Giai dOff1Jva dqp, thl!c ra day chi IiimQt 8\1tac dl}l1gchu khOl1g11\
mOt giai d9an, hat qua t1"1l1hva chl;\tnx~y fa 1.(1Cthai, co ngh!a Hithai gian

va ehl;\1llciing nh1151!dieh ehuy~n ella bua va cge khOng dang ke. Cho n£\n,
chllng ta e6 the eoi dQ dich chuyCn Ill'112khOng thay <16isaIl khi va ch;~m,
chi e6 v~ t6e eua bOa va C9Cthay d6i mQt cach dang ke thee COngthuG va
eh~n:
-4-
(2.4)
U{=u (X+l) 11/2 (UI-l~),
11l1+m2
Ui=I~+(X+l) ml (UI-~)'
n;+n7.
tTOngdo, it;,u' 111 v~ tOc cua bUa va cqc saIl khi va chlpll, Xlii h? sOva
ch~m, phV thuQc vao d~ng v~t chM cua bua va cqc.
(2.5)
- Giai dqan LItH,day la giai dqan xiiy ra saIl qua trlnh va chl.lfil
Phuong trlnh 1110ta sv chllyCn dQng cua htJa va cc;>ctrong giai do1,llln~ly
ltWr~gt~!phucmg tdllh (2.1), (2.2) cua giai <19anrung, tuy nhi~n c6 xet the "
uk d<jngcua Ivc can dfill Cqc. Cae GOngtl1lreva ehlpll (2.4), (2.5) dtf<;1ccoi
nh!! Ii'!v~nt6e\1anef:\11de gi;\j110plllrong Irlnh ehlly~ndQngclIa giai doall
ni.ly.
KN thue giai <1qanrung 111di~n ki~n v~n tOe eua eqc tri~t ti(~u(cc.1c
kbOng <IixuOng nila)
(?R) ill =o.
Trongtnrang h<;1pxay ra sVva ch~m giila bua va cqc tlwo dibl ki~n
(2.3), nhung dura iliaa di~lI ki<;n (2.8), qua trlnh chuyen I~i giai do~n va
dl;\p,neu di~ukt~n (2.8) xay fa, quatrinh chuyen den giai do~nrung.
Cae kef qua eu.a
bili toan nny <Iiiehr<;1ctrlnh bay trong 124][25][26]
127][28][29].
Mohlnh hili loan bua may dung cqc duc;>cxay dvng nlnr [lh11ntrUl'lc
di\n dC'nvi~c gi<\ibai toan:

11m hai thai diCm1»12be nhtIt, 10< II < 12va hai ham vector
;;(t),
10S I S It,
U(I),
10s I ~; II
sao cho
(2.12)
du=Au+~,
dl
'0 < It < '2.
- 5 -
(2.13)
(2.14)
(2.15)
(2.16)
(2.17)
-
( )
-0
u to =u ,
tl =min{t > to / Ul(t)- uit) =80}
dv ~
- = A"+ Fx+ F2' to < tl < t2
dt
V(tl) = BU(II)
'2= min{t > tl
/ "4(1).(111(1)-1I2(t) 8J =O}.
TrltO"nghf/P khOng va dljp "1(t2)- "2(t2):f:-80
Khi do chUng ta giai bili loan (2.12) - (2.14) vui
(2.18) to=tv ;;0=V(t2)'

TrltiJnghf/Pva drip "1(t2)-"2(t2) =80
Khi do chUng ta giro bi'titoan (2.15) - (2.17) v6i
(2.19)
/1=t2, ;;(tt)=V(t2)'
Bhng cach khao sat cae gia tr! rieng cua ma tr~n h~ s6, chUngWi
Omdugc cac rang buQctren dO'li~u.Tren 00 s6 cae gia hi rieng do, chUng
toi cOdugc k!1 qua ve nghi~m tOng quat cua cae h? (2.12) - (2.14) va h?
(2.15) - (2.17).
"
-6-
ClnJONG III
M~ts6 bililoan d~ng.'!ch~cm6 ta bmphtJ(m~:trluh parabolic
phi tuy~n
I. M6 hlnh bai toan d(!ng h.rchC!cbiln t1!al-chj~u. Chung la xcI
m(\t mien (2
C R3 bi ch~n,vai h~tIl!cto~dQDescartes°xyz, e6 tr~1COx,0)'
huang theo vi luy~n, kinh tuy~n trl!c Oz huang vao t.am uai dfit [JI{4].
Moi tnrang dU<;1ccoi Hidi hu(mg, khOng nen du<;1c,h{~86 nhat th(:o
tIl!COz ky hi~u Hivz' Trong tang m~tphang song song vai m~t ph~IWOx)'
gia lhi~l dong chay 6n d!nh, hi~u lIng rOi lheo chieu ngang khOng dang kC.
nai toan xac dinh pMn b6 twang v~n t6c a tung I(Jpc6 d~g:
011 011 1 &V ~ .,
_of w . , \1" I" - I Fir
, 1 2' r K
;// (}Z P Dz
d I~Uki~n bi~n. Tren be m~t (hoang, cho bi~t gifi tT! cua truOng ":,\n We va-
eho ap 8U1(tkhf quy&t:
(1.1 )
-
V. V -: (J

. -,
(1.2) V(x,y,z,t)= V/nI(x,y,t),
(1.3) p(x,y,z, t) = ~q (x,y, t)
Pl1\n duai day bi~n, giii su co ma sat 16nva mrac khOng ngam xu6ng, trong
tn! emghgp nlly <lieuki~n bien sc11\:
(1. 1) V(x,y,z,t) = O.
Ph \1]bien xung quanh, c6 th~ cho dieu ki~n nu0c khOng tach khoi bo:
. oV
(1.5) - =0,
. an
ho~(;dieu ki~n ma sat lao
(1.6) V(x,y,z,t)= O.
Die\] ki~n d1\u
(1.7)
- -
V(x,y,z,O):= Vo(x,y,z),
p(x,y,z,O)= Po(x,y,z)
- 7-
De girobai to~n n~y, chUngtoi dii xet sI!hQit\l ciia nghi~m phuong
trlnh sai phan xap xi cap hai tl1cothai gian va khOnggian. Tuy theo m(,\!s6
truOnghgp, chUngtoi ClIngch(rngminh duqc sI!6n djnh da Jai gi:\idp xi
tit h~phuong trlnh (l~is6.
II. Bai toaD dqng h.rch«:,cbi~n va d~i duong. Ngoai gi:\ thi~t v~
cMt long nInt di'ineu trong bai loan n~utr~n, d6i v6i bi\itoan n~y ch~ng (Oi
xet tMm cae hi~u 1h1gr6i thoo phUC1Ilgnfun ngang Ox, OJ, ding nhu die
thi\nhphM nh6t theo ba Inr6ng.Cac Il!Cbell ngoai baa g<lml,!c Coriolis va
lllc tr<;mgtruOng"cOnthi\nh pMn v~ t6e gi6 thi hi~n qua di~u ki~n biCn.
M~t thming b trl!-llgthili ban dhu duqc gic\thi~t c6 dao dQngso v6i mQtm~!
chuan nao d6 (cae k~t qua cila bai loan nay chUngtOjdiitrlnh bay trong Ill]
[12][13][14][15]).H~pln1ongtrinh mOta bai loan c6 d~ng;

(2.1)
V.v=o,
011 ~ ~ I ~ 02\1 ~ -~
+(V.V)V= V
p
+v ~V-,-v +F J F,
at P xy 1 f)z2 j' c 8
di~u ki~n bien va di~u ki~n d~u
- Tren m~t thoang cho phan b6 ap su~t kIll quy8n
(2.2) p(x,y,z,t)=~q(x,y,t),
thi\nh phM v~ t6c gi6
au. Ix Ov 1y
(2.3) vza; = p"( , V1 8z = - p"( ,
va dao dQng cila m~t thoang
(2.4)
(2.5)
(2.6)
Or)+ U
I
Or)-+-V
I
0"1 =W
I
.
or -1J ox -1J Oy -1J
-Di~u ki~n dfnh do challop.g nh6t 6 du6i day
u = v = w = o.
- Dr~uki~nclla b bien long b Kungquanh
unx +vny =O.
- Di~uki~ndhu ( cho vao thai diem t = 0 )

-8-
- -
V(x,y,z,O) = Yo(x,y,z), p(x,y,z,O)= po(x,y,z)
Sit dl.mg phl1ang pMp phfin ra theo t<;>adQ, bhng each klu10 sat !.fuh
nita xac d!nh duang va hennit. cia tOaDtit vi phnn. ChUng tOi Om nghi~m
thco tang IlltOOg,GOngthC1ichUng minh dltgC nghi~m elm biii lotio tl1cOqufi
trlnh pMn ra ehfnh Iiinghi~m eua phuang trinh xuat pMt (D!nh Iy 1,MI!G II,
Chuang 3 cia Lu~n an).
Buoc tiep thoo, b~ng each sai phan theo thOng gian, chUng toi nh~n
dllgc cae xlfp xi h~e n cua phuong trinh sai pMn so voi phuang triah x\l1ft
phill ban dhu
III. Mo hinh d9ng h9C tt.ra ph.tong tring Saint- Venant. 1 chn~QI.
'I110ng thuong, dtl.Hnh dong eh?y khOng 6n dinh tren h~ thong sOng ktnh
ciia vung anh hui':1ngthl1y trieu, ngtf()i ta su dl!ng phuong trlnh Saint- Venwl(
I-chiCu, trong lntemg hqp 1111y?lnh 11ltal1gcua ma sat nh6l b! (Iii bo qua 'lit
xcm SI.tma sat clJa eMt long vii th1'mhr:\n 11'1nan!,-kf (j (T1\y,do mu()n ~d
hi~lI (cngnh6l LacdQng I~n dong eMy, u\jng t1J~jjmuOn xua1 pIlat lir phlJ'OTlg
trinh dQng h!e l19c Navier-Stokes, phuong trlnh baa to1\n kh6i lugng, chung
16i dua fa dUllCmOt mO hinh ty:a pllltO'11gtrinh Saint- Vcnant l-chi~u, trang,
<16 e6 s~r tham gia elm thal1hph110nhc)ttrong pluto'ng trInh, ket qlla cluing wi
cIatrlnh bay trong [16].
V6i cae gia thiet san day:
- Chlft lr'mg dOng ehftt, khOng nen lhlc;1e,dAnghu6ng,
- Ap suit li\ tll"y Hnh.
Khi eto fir h~ phuong trlnh chuyCn etQng t6ng quat baa g'orn die
tensor (tng suft'tnhot 't~ cluing ta e6:
(2.7)
(3.1)
Olt au au au 1 op ]
(

m~ m~ m~.
)
at + u ax + v oy + Wa; =- pax+ p ox + ay + -Oz + Lv,
(3.2)
011-I It 01' + v ~ -j IV ~~- :00 }- 017+!
(
~t + m; +-~~-
)
-Iu ,
Of ox oy m (10' r ax 0' oz
-9-
op
(3.3) - =-pg
Oz
va phttC1.tlgtrlnh bao toan kh6i Itt<1ng
ou ov Ow
(3.4) -+-+-= O.
Ox Oy Oz
Di~uki~ntren m~tHlOangva dtt6i day dtt<1ccho nhtt san:
(3.5)
.
"
wi =m, + ul m, +vl m"
11 at 11ax 11Oy
ah ah
W
I
=U
I
-+v

l

-h -hax -h Oy
ChUng ta gh\ thWl them rhng dQ sftu 1/ =11+ h cua m,!c ntt6c
khOng dang ke so v6i m~t phang nhm ngang, khi d6 chUng ta c6 th~ (ltta V8.0
cac df;liItt<1l1gd~c trung cho sv phftn bO v~n tOe trung blnh theo chi~u thang
dUng:
(3.6)
(3.7)
11
V(x,y,t) =J u(x,y,z,t)dz,
-h
11
V(x,y,t) = J v(x,y,z,t)dz.
:-h
va cae gia thief atia M~nh d~ 1 (Mvc III, Chttcmg3 eua Lu~n an) va C1'13
M~nh ~ san, chUngWinh~ dttqe h~ phttC1.tlgtrlnh lien h~cchuycindQngde
xac dinh ehi~u cao Ii cling nhtt phftn b6 Wong v~ Wc V, V trong m~\t
phang Oxy. H~ cac phttong trlnh n'a.ykhac h~ phttong trlnl1Saint-Venant hai
ehi~u(jeM, c6 tbam gia eae tbanh ph~ d~oham b~ehai cua v~ t6c.
M~nh~ 2: Gia sit
I
(i) Moi Wemg 1ftdang htt6ng 't~ = 't;,
(3.8)
"
- 10-
(ii) H~ s6 nh6\: eua eMt long thee cae hl1(mg 11\ nhl1 nhau
v.=v.xy=v,
(Hi) Tensor N} duClcxap xi dltai dl;Ulg:
(3.9)

. oU 2 8V.
(
OU OF
)
N.=2vp-, N2=2vp-, N2=vp -+- ,
ox ay By ax
(iv) lrng sual teenbe m~t Unhthee I1'ngsuat gi6, ,
(3.10)
I
2 2
1". =1
9
f\W
g
cos(1 ,
.1/ g
L
I
=,,2
p
W;'sinH
21/ Ig a g l:
(v) (Jng sual ma sa(l,~i day (!nh Ihea ma sat eua dong 611djnh,
(3.11)
Lll h = ~ P0l!? ~ \/2)}S
C 1f2
L2Lh = g2P V{U2 :':\t ')Y
c III

Khi do, h~ phur111gtrluh chuy611dl)ng mrac n()ng hai chieu cung v6i plllrur'g

trlnh Jit:nt\lc c6 dC;lng:
au a u2 a UV 8rl a
(
au ()V'
)
(3.12) ot -+-fy-;/i-+- By II = gH ax -+-lV-l- v~U -+-v a; ax -I [~1;,I
g ~(~:_:~_V~1~+1g2P~~2.coseg,
1 It- p .
c
av iJ UV iJ \/2 8rl iJ
(
iJU <11/
)
(3.13) &-+- ij-; H -+- By H :co -gl! B.y-LU - v~V -+-v By Ox -I-~?}; -
)
1/
V
(
u7 I v2 /7 - 2 Fa W2sin8g
g +"(1'. 8
(/ [(J. p
- I I -
all aU oV
(3.14) + + =0
at ox 8y
San d6, gi<\thiel d6y cua long dan c6 d~g ntta hloh tang tl1;l,SI!thay
d6i b'e mM va da
y
theo true O
y

khOn
g
dan
g
ke. Gii\sa V =0, -~ 11\ham
II II
cla x va t, h,reCorilolis [= 0, h,rcgi6 ~ = O. Chung Wi nh~n (htqc he
phuong trlnh mOhi chuyen dQngdong cMy mQtchien:
(3.15) B Or} tJQ
+ 0
ot ax-
(3.16)
~ 8Q +~~ Q2 + Or}+ QIQI =2v o2q
gA at gAox A ox c2A2R gAOX2
trong d6 , . 1 '
-A H\di?nHehm~tej\teua long dan, B 111ehi(;lJ rQng m~t thoang,
-'r.' 1
R
A "A-
= B li'tbankfnhthuyh,recualong dull,
De giro h~ (3.14),(3.15) chUngtOisa dl;lngphuong pMp khai trien
I
tj~m ct,\ntheo tham s6 be, bhng each d~t g = 2fi ,gh\ siltdiehamQ va'1
duqc khai trieD theo lUythira ctla 8 runt san:
(3.17)
m
Q(x,t,g) = LQ",(x,t)!>"',
",=0
(3.18)
m

l1(X,t,&) = L l1";(X,t)!>'"
",=0
-12-
v6i E all nho lit!c6 thl! cui Sign(Q) nhula Sign(Q)J. Trong .:16die h~ 86
Qo' 110thou h~ phuong trlnh:
(3.19) B~llo+ ~ = 0
at ox '
1 0{1 1 a ,~:! Urlo QoIQ,1
+ + + =,0
gA at gAox.l1 at c2A2R
con cae h~ 86 Q"" 11"" f11= 1, 2, thoa h~ ph\1t:mgtrlnh
(3.20) B ?J", + ~g", - 0
at ox ,
~~_.?f2'!!+.3_!. ~q",.,: <7r.b.+~~q~:: l~'I(Q(I,QI, ,Q",I)
gA at gAox A ax cAR
IV. Hai foan Ian fruY4!:nva khulch tan cua l.gu;~11ga)/ ~i}II1Ihij~l1l.
Chllng fa ghi sl'r(p(x,y,z,t) bi6u dj~n luqng nhi~m ban du<;rcIan truy:~n vit
!JlU~ch t{mc!(?ctheo quy d~o cua de h<;1tm{)i tntang chuy(!n d<>ngv6'i v~n
t6c V(x,y,z,t). Baj loan m() l<\51!Ian truy'en va khut!ch t{in (lJa ngul'in gay
(\ nhiCm c6 o,.\ngsan:
(4.1)
o<p O(P 8<p - O(P 0 o<p
+ /1-+V + w -" J-tLl<p+ -v-+ f
at ox oy oz 8z 8z
\I(x,y,z) EO, \It E(O,T]
Dr~u ki~nullu
(4.2) <p=<Po trong 0, khi t = 0
Di'eu ki~n bien
(4.3)
<p:=<Pstr~n L, t E( O,TJ

- 13 -
(4.4)
?!.=a<p 1r~nLo, tE(O,T]
oz
(4.5)' i3<p= ° 1renLH' t 'E(O,T]
oz
\'
trong d6 bien i3O=L: u L:o u L:II
V6i bai loan di;l.tfa, chung Wi nh~n dH9'Csl;t du~ nM't nghi?m cua
bai loan trong trttang hqp cac h? s6 khuecp tan, h? s6 {Hang Hic v6i mOi
Wang Mn tren 11\khOng fun. '
Su d~ng plnrang phap phftn ra theo qua trinh v~t 1:9,chUng wi tach
bai loan thanh hai d~g: bai loan Ian trUyen va bai loan khuech tan. Khi d6,
chung tei cling ch(rng minh 'dH9'e,nghi?m dp xi t1'cbili toan khue.ch tan
tren tirng d9an thai gian phfin ho~ch du9'e tach fa, clIng!than phuong trlnh
xuttt pMt. San d6, bhng cach phfin ra thee t9a dQ,tirng bi'liloan du9'Cdtta ve
d~g mQt chie.n v6i cae loan tu nun xac dinh dl1ang. ChUng wi cling kMo
sat s,! 6n dinh cua lai giro b) h? phl1ang trinh d~i s6 tuye.n Hnh. Cae ke.t qlla
n~y chUng wi da dang trong [18][19][20].
V. Bal toan v(l.sy Ian truy~n va khu€ch tart ngu'on clult bftn
~rong mtac dual diU.ChUngWithie.tl~pmQth? phHangtrinh bao gom hai
phl1angtrInh:
- phttong trlnh Bussine,sqme hi m~ttv <ioCURmr6e du6i dat, va
- phuong trlnh bi~u di~n s,! Ian tnly~n va khu6ch tan clIa nOngdQ
chAthoa tan trong mr6e.
c6 d~g nhu gnu:
(5.1)
0 Oz~ = V.[(z,- zet)KVz,]+F
ot
- 14-

as V.[(Zt-z(J/~KIVz,IVS]
(5.2) 0 == . + KVzSS+ Q
, Ot Zt Zd
tren <X1sa (tinh lu~t th:1m Darcy
(5.3) V(x,y,r) =-KVz,(x,y,t)
va mQt s6 gic\thi(ll [17J: m~t tlJ do cua mtoc duoi dtI't z,(x,y,t) n;!m thap
han so voi m~t dtI't,chuyen dQng cua nuoc dttoi d:1tgan m~t (%1:Iii chuy&n
dQng khOng ap, lOp dtI'tsetz(,(x,y)dttoi mi~n chuy~n dQng cua mr6e thtlm
thay d6i ft, nttoc dttoi dtI'tla GMt long GOngeMf, khOng ncn dugc:, 1:1:11: 1:\
mOi tntang kllOng ntn dttqc va dang htt6ng.
ChUng tOi pMn ra pai plltrang trlnh tr~n 111Qtcckh lil~ntWp dbng
thoi trCn cling mQt kh<n\nglhhi ginn. 'f'{nhIlIla xac dinh dllctng din die: lolin
ta vi phfin xuff'thi~n trong p)ntctng trlnh dIng dugc khan 8M d€n. Sa" rf6
bang phuong pMp sai phfin fin, chUng Wi dua v~ h? phl1ong tflnh ft~j :><5
tuyen Hnh, d~ gic\ih~ n'!\ycMng wi con khan sat tht'h1 !fnh 6n dinh clla lai
gic\ivoi die raub bu(!c v~ v~n tOed()ng thatn cling n]n( cua bl1~5Chr6i,
- 15 -
CHtJONGIV
M<'ts6klt quaHnhto{m
Trang chuang n1\ychUngwi neu ml>ts6 ket qua Hnh s6 du6i d~g
dOthi cua cac mOhlnh bai Loan,rung nhu phuong pMp tfnh Loan,da d~t ra
!rang Chttdngl va Chlfdllg/ll. Cac ket qua n1\ydt!aLIenmQts6 s6 li~uOWe
te ding nhu ghi dinh, de qua d6 danh gia ve m~t dinh tfnh cua mOhlnh va
phttong pharo
I. Tlnh toan dao d(mg va biln d~.mget'm f.hanl. d~lI1hoi. CluIng
Wi11\nluc;tf.Hnhloan cae bai loan gall:
1. Bd; loan
u6fJ lhafJh dafJ /Wi phi luyefJ, Cqung wi tinb loan cho ml;)ts6
truem.ghgp neu trong Chttdng/l, M~4CI nhtt du6i dlly, cae ket qua (15du<;lC
trlnhbay!rang [2][22].Gia su caeham g, M dtt<;lcch911t11baeae yell Cftll

cUanhih1g dinh ly ve st! ton ~i, duy nhal eua.lai giai, rung nhu S\fd{mh girt
sai 86 tren 1Mgiro. Khi d6 bai loan xffp xi tuang duong v<'1ih~ phuang trlnh
phi tuyln. Trong d6 ma tr~ li~ s6 c6 d1;U1g3 duang chen. Tit dlly, chung la
c6 the su dl!ng phuong phap truy (lu6i de Hm nghi~m.
2. Bd;loan bUamayd61lgcqc.ChungWidaHnhloandvatrenmOh}nhva
phuong phap rua bai loan d~t ra trong Chudng/l, M,!c fl, v6i cae diI li~u
thoa cae dieu ki~nda khao sat nhu sau:
-Kh6iIttongbuatir40Mn 1O0kg, ,
- Kh6i lu<;lI1gC9CdIng de (bQga Hip)nh~ gia Ifj lir30 dCn90kg,
-Loxo c6 gia I.titrong khoang 50000N/m,
-Khoang caeh ban dl\ll giUa bua va de c6 gfa 1rj Ui"1 Mn 9mm,
- Thn s6 quay eua dQngeCitit 110 uCn190rad/s
va mQt s6 86 li~u ve dAtdung trang quy ph~m v~ d6ng C9Cgia c6 n~n
mongo
Cac torang hgp chUng wi da khao sat baa gOm: sl! phI! thuQc giITa
dQ sAu d~t duge v6i c<;>cva de, s\! ph,! thul;)cgiUa dQ sau d~t du<;Icv6i bun,
st! ph,! thuQc giO'adQsftu dl;\tdll<;1C,v6i khoang cach ban dftu eiia bua va dc,
S\!ph,! thuQc giO'adQsau dl;\tdu<;1cv6i t1\ns6 quay rua m;iy bUa,
- 16-
Tren (;(j so cae k~t qua s6 (Hi nhl~l1 dtt<;1e, cluing wi nit ra l}}i?1Stj'kE~t
lu~n (cae kef qua Hnh loan chung Wi da trlnh bay trong [24]1[2,!j][2:6][2'71
[28]129]):
-MO hl11hHnh loan, cung nhtt phttC1l'\gphap giiu cho kef qiia phil
hqp ve m~t d~nh Hnh so vOi bUa may Uwe 16da (11«;1(:tlwc nghi~m.
-Hi~u qua cua va d~p Ii\r11't16'n.Trang nhi'eu tnt<mg hilI' dQsau cae
d611gd11<;1Cntu c6 va d~p, 16'ng11'pdoi so v6'i qua trlnh J~b()ngc6 va (I:~p.
Khoang each ban <.filucua bUava de rat c6 ynghla, dij sfiu GilaO?Cgh\m dhn
khi t<lngkhoang cacho
- Khi t<lngkh6i 111I,:IIlgcua bUa den mf)t ngttiJng nao <16,se kMng
can ynghia Wi l1U.D6i v6i de va c«Ccung cha ktl qua r~ul v~y.

II. Tinh toan ID9ts6 bai toan d9ng life h9C.
1. BiJi roan a{Jng llfc hqc bii'll wa i-chicll. Bi\i loan nfty dtf<;1Cdi)ng df; tJnh
loan khOi plwc I~i dl)ng dulY b cae thng stiu khae nhau dw~i bien khi bi{rt
s6 li~u v~ dong dulY va pIlau b6 Ir11ongv~n We tfen m~t Ihoting (~ic ktrt
(l\\a da d~ng trfmg [3][4]).
Thtl~1loan da dulle kjCmnghi~m IJennuly tfnh, va ~mld6 Sttdl,mg
Hohtoan cho khu V\fCphfa Nam bien DOng,vai cae 86 Ii~u do ('[<,1cd\1OC
clla Phong V~t Iy bi~n, Phan vj~n Dftu kbf phfa Narn.
Cae btrde ltt6'i khOng giao Ihco Irt;leOx, Oy dlUJCIa'y c6 d!nh, CC!D
thea tn,lc Oz dlt9'c Iftythay d6i tily thea df) sau.
. Ax=~y =112000m, 1m ~ ~Zk ~ 100m,
trang d6 ~z/'lftn 111<;11nh~n cae gia tr~: 1m, 1m, 1m, 1m, 1m, Sm, Sm. 5m,
5m, 25m, 25m,,;.25m,50m, 50m, 50m, 5Om, 50m, 100m, 100m, 100m,
100m, 100m., '
BUde Itt61thbi gian t\t = 360CB.
Cae s6 li~u ciia mOi truong du<;1cla'y 0011sau:
- M~t (If) n116'ebi~n p = 1025kg f m3,
- He s6nhdt v== 10-2m2fs,
. z
- V~n 16cg6c quay cua trai d:I'1()) =7,29 x 10-5 /S
-Vi d0 t~i (ti(!mkhao sat <D=0,1745
- 17 -
-Gia t6e tT<,mgwang g = 9,81m 182,
Dl!atxen ibQ s6li~u (eua 2 ngay) v~ v~ t6e M m~L,eho chung La
khoi ph,!e I~i 00 eM dong eMy elm cae tMg san Mn du<'1ithoo LunggiG
mQt.ChUngLoi<Hitinh LoanIan hrql.txong Lnrangh'lP 1.1faG 16peach bb
m~t 1m,2m, 3m, 4m vao gia thu 24 va vao gia thu 48.
2. Edi toan
dqng lifc hqc bi!n va dqi dlldng. Cae sOli~u eua moi Inlang clln
biliLm'innay du'le I~ynhu san [5][6][7]:

I'
-M~L dQ nu6e bien p == 103kg/m3,
'~ 7'
- H~ s6 nh6t thoo phuong nl1mngang vxy == 10' III ~s,
-H~ s6 nh6t theo phuong thang dUng Vz==1O-2m7/s,
-Lve Coriolis c6 d~g I =-2(0 sin (D, trong (16 w 7,27 ,< 10 1 S 1
va <I>.lavi dQtrong vung vjnh n~e bQtit 1i) d~n 220, I
-Gia tOetrc,mgtxuang g = 9,81m/s7, .
-
TTItang gi6 ill gem hai thanh phlln (1:x,1:)1)du'le tfnh thoo GOng
I
thueil/ = (31"~I~,trong d6 ~ Ia vectorv~ tOegi6, c6 g6eh'lP v6i t~c
Ox 11\81/' Thy thoo v~n tOe gi6 m1,lnhhay y~lI, gh! trj f3dU<.1e111yntH!san:
f
O,98448 x 10-2 ne'u IWgl< 6,6m/s2
p= ~
3,10956 X 10-2 ne'u IWgl;:::6,6m/s2
- Ap su11'tkhf quyen 11lygia trj h~ng sO 11\97820 Mb
Tuy thco dja hmh, cl1ling tOi d5 tfnh Loan eho hai Lruang h~}psall [8][9][10J:
3. Eai toan tan truyelz W1khuech tan cua ngu1Jngtiy 6 nhi/;n. Chung (hi cia
tfnh Loan eho hai tTItang hqp ri~ng Ie [18][19Jr20J:
- Truang hqp nguOn () nhiCm t~p trung Lr~nbi~n
- 18 -
"-' '.'
- Tnrong h<;>pnguOn 0 nhiem phful bOu.en bien va diem chinh giCra
mien.
Trong ca hai tn101lg hY'P, chung ta nh{111tl1iiy nong d~ chat. gay
nhi0m brill Ian tnlyen d<;>ethee hl16ng v~ tOe, gia tf! Hnh Loan lubnlll{}n
cho k~l qua th:fp hon gia tf! trtn bien.
TfCn C<.1so nhftng kiem nghi~m ve m~t Iy thuye"t tfong vill,c (](;fa

phuong phap giai cling nhtl cae ket qua Hnh Loan, chUng tOi nh~n 1My lnl~
hinh va phl1ong pMp dan Mn ket. qua phil hqp ve m~t dinh Huh.
4. Bai tOlln Ian truyen va khutch trIll cua nguon chdt bJn trong nUde £!l{m
ddt. ChUng wi <15Hnh Loancho 6 trl10ng hqp kMc nhau cURdiet! ki~~nbi{',u.
Ke"tqua Hnh Loancho th1I"ymve mr6c Ian truyen dlln vao Mn trong mn~ll, do
h~ s6 thllm K Illy kM be, nen mvc nunc 0 Mil tfong tha'p hon gl1nbien. D6i
v6i nbng d~, chung ta cling e6 ke"tqua tuong tv, khi eho gia tT!tren biCn
tang cfllnleu thi Mn trong mibn gia t1'!nh~n dtl<;>ccOng U\ng <l!lnI~~n.Cae
ke"tgila dllqc t1'lnhbay trong [17J.
.' ' '
- 19 -
TAl LIttUTHAMKHAo
I
[1] N.T.BANG,T.V.LANG,al al., A nonlinear differential equation relating to
the buckling of a nonlinearly elastic bar ~ersed in a fluid, Proceedings
of the HCMC Mathematics Consortium 1st Conference, Vol.1,1993, p.5-
12.
[2] T.l.CU'ONG,H.B.LAN,T.V.LANG,Giro s6 mQt phuC1ngtrlnh phi luy~n
lien kef v6i toan tu Bessel, Proceedings of the 4th Workshop on Applied
Mechanics, 4/l994,TpHCM,1994, fr. XVIII-7.
[3] T.V.LANG,LV.THIEM, Mo hlnh t,!a mQt.chien M Huh loan e0 eM dong
char 1.1cae fang sau dufli bi~n, f/tJi nglzt Cd hqc toi}n q1"5Cfan tlllr lV, Hi)
nQi, 20 - 22/01/1988.
[4] T.V.LANG,LV.THIEM, Mo hloh t,!a mOt ehieu M tlnh loan co che' c\i'H1g
char a cae mug san dtt6i bien, B(IO cao Khoa lu?c stY87.202, TrunR Tam
Tl{(fD&TH, Vi~nKHVN, TpHCM, 1987, 19fr.
[5] T.V.LANG,Mo 111nhdQng l,!e hge bien 3-chieu de tfnh loan dhng cl1<\Y(\
mQt khu v'!c c6 dQsan dang k~, 1'6111tat Cong Trinh Khca Hqc - lltJi Ngh!
Khoa Hqc, PMn vifll Khoa Hqc Vi~tNam, TpHCM, 1988, tf. 105.
[6] T.V.LANG,Mo hlnh dQng l,!e h9C bi~n 3-ehicu de Hnh loan dong eh,\y (~

mQtkhu vl!c c6 dQsan d{mgke, IitJiNgIltKlioGHqc Co'Hqc 1']1HCM Ian
thu I, Tp HCM, 01 - 03/03/1989.
[7] T.V.LANG,Bai loan 3-chfeu Hnh dong chay va m,!c Mac do gi6 gay fa.
C1Uldngtrinh 48.B, Ha nQi, 1988.
[8] T.V.LANG,PhUC1l1gphap s6 cho bai loan dQng Ivc h9c bien 3-ehj~u.I1(;i
Thdo CdHqc PMp Vift, TpHCM, 19-22/07/1994.
[9]T.V.LANG,T.T.TRAI,PhuC1ngphap s6 cho bbi loan dQng h!e hge biCn 3
chien. Proceeding of the 5th Work hop on Applied Meclwnics, 4/1995,
HCMC, 1995, p. 10.1- 10.5.
[10]T.V.LANG,T.T.TRAI,PhUC1l1gphap sO eho bi\i toan dQng l~rchQc bien
3-ehieu.T{lp cM Khoa hqc & Gong ngh~, BK & SPKT, So 9, (1995), I-lanQi.
(Gia'y nh~ dMg s6 15/NCKH ngay 26/06/1995).
- 20-
[11] T.V.LANG,D.M.NGQC,LV.THIEM,Xfiy dV11gmO hlnh toan hqG giiu s6
(rang khOng gim1 3-chi~u cho vi?c mO ta, dt! bao hii' hlqng va ch~fLIlft;1ng
mcoc cua hb chUa 11111Ydi~n 'If! An 1tllU<)Cnh6m d~ tili "OJ.!baa ch~lthlt;mg
nuoc cua hb ch(ta Thi'IYdi~n 1'rj An va roO h1nh toan", De tai Nh/l 11l(('h:
"Nghien cuu m6i truiJng sinh tluli h6 clll(a nU'<}'cTMty dien Trt An", Tp
HCM,1985.
[12] T.V.LANG,D.M.NGQC,LV.TtIlEM,Xay d1.!DgmO hlnh toan hqc ghH 86
trong khOng gian 3-chi~u cho vi~c mO ta, dt! baa 11ii'hlqng va chill htr;mg
nuoc cua hb chUa Thuy di~n Tri An, liqi nght TOlIn hqc Vift Nam Lan thti
Ill, Ha n<>i,07/1985.
[13]T.V.LANG,D.M.NGQC,LV.THIEM,X:\y dt!ng mO hlnh toan hqc gi:'li:~:(\
Lrong khOng gian 3-chi~u eho vi9c mO ta, dt! baa 11ii'luqng va GMt ltcr;mg
mroe cua hb chtia 'Thuy di9n Trj An, llqi thdo Cd hqc chat lOng, Nha trang,
07/1985.
[14] T.V.LANG,D.M.NGQC,LV.HIIEM, XAy d~r11gmO hl11htoan h9c giiUr,:6
lrong khOng gi:U13-ehiCu cho vi9c mO ta, dt! baa trii luqng va eh11LIHong
mro,c cua hb chua ThUy di~n Trj An, l-lqi ngh( Khoa l'oan Dqi hqc Tdng

lz(jpTpHCM, 06/1985.
[15] T.V.LANGva;c~cI~cgia.Nghien c{cudong cMy ngoai bi~n, IMi light
TOIIIIhqc Vi~t Na17lLantluHll, Ha n<)i,07/1985. 1'6m t~Ltr. 133.
[16] T.V.LANGva c~clac gia, Xc! anhlnrbngnhol tTenbili toan dc)ng c:h:\y
khOngon djnh m<)tchi~u,Hqi nght Khoa hqc Lanthu V, TruiJngDIIBK II}
HCM, 06/1990, cr. 42-43.
[17] T.V.LANG,B.M.NGQC,CAnbhng va GMt hcq'J1gmtoc dum o1'\tlrong
mila khO,Bao do klwa hqc stf 83.203, Trung Tam l' oan Hqc (}"/1gDlfl18 WI
Tin Hqc, Vi~n KHVN, TpHCM, 1983,21 cr.
[10] T.V.LANG, N.T.PHONG,51! Ian truyCn va khu~ch h111Gila nguhn (~
nhiCm trong khOng khf, T-I~)iI1ghi Khoa hqc va C6ng I1gh(' l/il1 tilT! VI,
TruilngDHBK Tp HCM, 16-17/02/1995, tr.99.
[19] T.V.LANG,N.T.PHONG,ve bai toan Ian truy"~nva khut!"chtan dla
ngubn 0 nhiem, Proceedings of the 5th Workshop on Appli(~d Mechanics,
4/1995, HCMC, 1995, p. 13.1- 13.7:
- 21 -
[20]T.V.LANG,N.T.PHONG,~ bai toaDIan tmyen va khuech tan cua
ngubn 0 nhiem, Tqp cM Khoa hqc & Gong nghf, BK & SPKT, S6 9,
(1995), Ha nQi.(Bainh~n dang)
[21]T.Y.LANG,
Blii toan u6n thanh dan hOi phi tuy6n dl1(;1cnhung trang 111\)(
cha:'t long, H{3i nghj Co' hqc V «tran hien d{Plg toan qudc Ion thl~'lV, Hi\ n<;\i,
10/1994, T6m t~t, 1r.44-45.
[22]T.V.LANG,N.T.LONG,Phl1cmgpIlar phhn tichull ban ap d~ng VaGhlii
to<1nu6n mQ1thanb dan hbi phi 1uyCn,Proceedings of the 4th Workshop on
Applied Mechanics, 4/1994, Tp HCM, 1994, tr. XIIII1-S.
[23]T.V.LANG,T.LCU'i1NG,H.B.lAN,Gi,\i ;86 mQ1 phl1(1J1g11'111hphi tu)'61
lien kef v6i loan tit Bessel, Tqp eM Khoa hqe & C611gI1gh~,ilK &.SPKT,
S67, (1994), HanQi, tr.13-16. . "
[24] T.V. LANG,at at, Mathematical Modelling of the Hammer Machine,

The 4th Congress of Vietnamese Mathematicians, Hanoi, Scpo 4-7,1990,
Abst. p.137;
[25] T.V. LANG,at at, Mathematical Modelling of the 'Hammer Machine,
Proceedings of the HCMC Mathematics Consortium ist CO1~ferel/ce,
VaLl, 1993, p. 180-186.
[26]T.V.LANGvi) cae tac gia, MO hlnh to{m h9c bua t11ay,Tgp eM Khoa
Hqc va Gong Nghf, Vi~n KHVN, S6 6,(1992), tr. 19-26.
[27]T.V.LANGva cae tac gia, Me hinh loan 119cbua 1118Ydong c9c, lh')i
.nghjKhoa hqc Lantl1l1V, Tr/((lngDHBK Tp HCM, 06/1990, tr.51-52.
[28] T.V.LANG,H.C.HOhl,LT.THANH. Mo hlnh loan h9~:cth btia may, Jlqi
nghj Co' hqc Vqt ran bitn d{Plgtoan quo(; tan tlut lV, H8 nl!i, 10/1994, Tom
tal, tr. 44. .
[29] T.V.lANG va cae tac gia, Mo hlnh taan h9c bUa may dong C<;1C,De Idi
ctfp B{3(I'ruiJng DHilK Tp HCM qudn If), Nghi~m tilt! ngay OCi/O1/l992.
[30] N.T.lONG,T.V.LANG,Th{~Problem of buckling of;t nonlinearly clafiLic
bar immersed in a fluid, De tai 2.2.10, (CII1I011gtrinh Nghien deu C(y ban,
1993). Jour. Mathematics (gi3'ynh~l dang s6 15-94, ngay 22110/94, T~p
chi Tmln H9c Vi~t Nam).
- 22-

×