Tải bản đầy đủ (.pdf) (32 trang)

Luận án tiến sỹ Xây dựng, phát triển, ứng dụng một số mô hình kết hợp giữa mạng nơron (NN), logic mờ và thuật giải di truyền (GA)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (9.08 MB, 32 trang )


B~I HQCQu6c GIATHANHPH6 He, CHI MINH
TRUC1NGB~I HQCKHOAHQCTV NHIEN
LE HOANGTHAI
xA Y DVNG, PHAT TRIEN, UNG DT,JNGMOT s6 MO
H1NH KET H<lP GIUA M~NG NORON(NN), LOGIC
MO(FL) VA THU~T GIAI DI TRUYEN(GA)
Chuyen nganh: Barn bao tmin hQCcho may tinh
va cac M th6ng tinh toaD.
Mil 56: 1.0LlO
T6MTAT
A' '" - ,
LU~N AN TIEN SI TOAN HQC
Tp. H6 chiminh-2004
-
Cong trlnh nay du'~choan thanh t~i:
Khoa Cong ngh~ thong tin
Tru'i'1ngD~i hQckhoa hQc tl! nhien Tp. H6 chi minh
Ngu'i'1ihu'ang d1inkhoa hQc:
TS. Tru'dng My Dung - DH KHTN TP.HCM
GS.TS. Bili Doan Khanh - DH PARIS VI
Phcin bi~n 1:
GS.TS. Nguyen Lam - DH DL Van Lang TP.HCM
Phan bi~n 2:
PGS.TS. Tr~n Van H~o - DH Su' ph~m TP.HCM
Phcin bi~n 3:
PGS.TS. Nguyen Thanh Thuy - DH Bach khoa Ha ni)i
Lu~n an se du'<1cbao v~ t~i hi)i d&ngcha'm lu~n an dip nha nu'ac hQp
t~i:

vao h6i


gii'1.ngay tMng
flam 2004
Co the Hmhieu lu~n an t~i cac thu'vi~n Khoa hQc:
Thu' vi~n cao hQc tru'ong D~i hQc khoa hQc tl! nhien Tp. H6
Chi Minh.
Thu' vi~n khoa hQct6ng h~p Tp. H&Chi Minh.
A. GIdITHI~U LuAN AN
Vi~c sit d\lng kj thuq.t t{nh roan mim trong tr{ rue nhdn t{lOb~t d~u
du'<;1ckhai thac trong th~p men 90 vdi m\lc tieD giiH quye't nhfi'ng bai
tmin xilp xi, g~n dung. Ky thuQt t(nh todn mim (soft computing) khac
vdi cac ky thu~t truy~n th6ng va ky thu~t tinh tmin cung C1cM: no
chdp nMn tfnh grin dung, kMng chdc chdn. V~ cd ban, mo hlnh m~u
cho kj thuQt t(nh todn mim la tll duy clla con nglliii. No khai thac kha
dng d~c bi~t trong tu'duy cua con ngu'<1ikhi giai quye't hi~u qui cac
viln d~ trong nhii'ng moi tru'(JngkhOng cMc cMn va khong chinh dc,
dl!a tren nhfi'ngphu'dng phap tinh loan va I~p lu~n logic truy~n th6ng.
Kj thul)t t(nh loan mim khOng phii la phu'dng phap ddn Ie. No la sl!
chung phh hay noi cach khac la sl/ kIt h?p qua l{li cua nhi~u phu'dng
phap, trong do cac phu'dng phap cd ban la: Thul)t gidi di truyin
(Genetic Algorithms- GA), m{lng Ndron (Neural Networks- NN) va
Logic mo (Fuzzy Logic- FL). Trong bQ ba GA, NN, va FL; GA la
phu'dng phap tlm kie'm bie'n giup cho vi~c giii cac bai loan t6i u'u;NN
la phu'dng phap hi~u chlnh, sU'ad6i tham s6 sao cho phil h<;1pvoi bai
loan dn giai quye't, no giUp h~ th6ng co kha Dang hQCva nh~n bie't;
FL t~p trung vao vi~c xU'19cac tinh loan g~n dung.
Nhfi'ng tie'n bQ khoa hQc ky thu~t d~t du'<;1ctrong nhfi'ng Dam g~n
day d:i khing dinh vi tri cua t{nh loan thong minh (Computing
Inteligellce- CI) vdi n~n bing la kj ITluQttfnTl tOOIl11/2111.f>~ng th<1i,
xac dinh raub gidi gifi'a no vdi Tr{ rue nluln t{lo clf truyln (nin tang IiI
kj thuQt tfnh loan cling).

Vi~c nghien cuu cua lu~n an vdi m\lc lieu: hy vQng ap d\lng'mo
hlnh kIt h?p cac kj thuQt t{nh loan mlm cho vi~c giii quye't cac bai
loan trong thl!c te'sao cho thu du'<;1chi~u guilt thl!c hi~n cao nhilt.
Lu~n an nay t~p trung nghien CUuhai viln d~ chinh:
(1) T6ng ke't mQt s6 phu'dng phap ke't h<;1pqua l~i gifi'a Thul)t gidi
di truy€n, m{lng Naron va Logic mo eua cae nha nghien CUlltrong va
ngoai nu'de: trlnh bay t(nh cOnthie't cua vi~c ke't h<;1p,cae phll(/f1gthdc
ket h?p, mQt s6 vi d\l minh hQa va dlla ra lup hili roan thich ung Mi
vdi tt'tngmo hlnh ke't h<;1p.
(2) f>~ xuilt mQt s6 mo hmh ke't h<;1prieng: Cae h~ th6ng Di
truyin- Mii, Naron- Mo, Di truyln- Naron, Vi truyln- Naron- Mii.
f>6ng thCJi,chi ra Hnh khd thi eua chUng trong vi~e giai quye't ung
d\lng, d6 la hiliJoan pMn loq.imdu t6ng quat. Lu~n an d~ c~p hai lop
bai toan cua ung d\lng nay: phdn logi mdu khOng mitt mat thOng tin:
Chung thlfc m~u, phan lOpm~u va phlln [oq.imJu hi ml1'tmat thOng tin.
Giiii 100bai toaD vhan loai m~u khong:ma't mat thong: tin:
Giiii lop bai loan chung thlfc m~u (phan bi~t THATI GIA) b?ing
mo hlnh ke'th<;1pgiii'aThuqtgiditienhod (EA)voi Logic mG(FL) (mo
hlnh FL_EA).
Giiii lOp bai loan phan lopm~u b?ing mQt s6 mo hlnh ke't h<;1p:
giii'a mq.ng Naron va Logic miJ (m\\ng Ndron mCl (Fuzzy Neural
Network- FNN»); giii'a mgng Naron va ThUQtgidi di tl'uy€n (mo hlnh
NN_GA); giii'a m(Jng Naron, Logic mil va Thuqt gidi di truy€n (mo
hlnh NN_FL_GA).
Giiii 100 bai toaD phiin loai m~u bi ma't mat thong tin:
Ph\lc h5i m~u bi ma't mat thong tin v~ tr\\ng thai ban dilu b~ng Bi)
nho ke't h<;1p(AssociativeMemory- AM). Sau khi m~u du'<;1cph\lc hM,
quay trCll\\i bili loan phan lo\\i mh khong ma't mat thOng tin: chang
thl,lcmdu ho~c phdn lop mdu. E>~chu~n bi bi) dii'li~u hua'n luy~n clIo
mq.ng plu,lc hai: BI} nhO ktt lu;tpva mqng phdn lrJp:FNN va NN, lu~n

an d~ xua't mi)t ky thu~t tlf di)ng phat sinh bi) dii'li~u hua'n luy~n thay
the' phu'dng phap chQn milu thu congo Ky thu~t nay hlnh thanh tli mo
hinh ktt h</pgiii'a Thuqt gigi di tl'uyin, m\\ng Kohonen va Logic mG
t\\m gQila mo hlnh GA_Kohonen_FL.
Cac ung d\lng thlfc te' trong lu~n an minh hQa clIo vi~c sit d\lng
nhii'ng mo hinh ktt h</pdii xiiy dlfng: Chang thl,lcdnh; Nhqn dq.ng chil
viet tay; Phdn [oq.idnh van tay mift mat thOng tin.
B6 C1,1Ccua lu~n an
Lu~n an dai 155 trang, 53 hlnh ve va d5 thi, 19 bang s6li~u va
ke't quii. Lu~n an g5m Dam philn:
Chu'dng 1: Ke't h<;1pcac mo hlnh Hnh loan thong minh.
Chu'dng 2: Mi)t s6 mo hlnh ke't h<;1pc~p doi: Di tl'uy€n- MG, N(!I'O/l-
MG, Di truy€n- Naron.
Chu'dng 3: Ke't h<;1pba ky thu~t: ThUlJtgidi di truyin, mgng Naron
va Logic mG.
Chu'dng 4: Cac ung ch,mgthlfc te'.
PhVl\lc: g5m lOphvlvc ttt A-J. Tli phVl\!c A de'n plw l\lc G: cac
va'n d~ 19 thuyC't cd biin ma lu~n an sit d\lng. Tli ph\! l\lc H Mn phv
l\lc J: phan Hch cac ung d\lng thit nghi~m.
2
B. NQI DUNG LU~N AN
Chu'dng 1
KET HQP cAc MO H1NH TfNH ToAN THONG MINH
1.1 ThuQt giai di truyin k~t help vui Logic mu
Thuqt giai di truyin va Logic m?1c.omQt vai diem chung va rieng.
Ca hai ky thu~t d~u thich hQp vdi vi~c xu 19bQ du li~u dung cho cac
h~ tM/ng dOngphi tuytn. Su d\Jng hai ky thu~t nay giup cai tie'n hi~u
su[t cua M tho'ng: t6i lIu ktt qua va t6e dO thlfe hi~n. H~ t/1(5ng11/()
du'Qcdung de lu'u tru tri thuc cua chuyen gia vdi dIu truc thich h<;1p,
ti~n l<;1icho vi~c mo phong hay chinh sua tri thuc. Trong khi do, Thu(j.t

gidi di truy€n hu'dng tdi quy trlnh tlm kie'm loan cvc, giam bdt cac
tru'ong h<;1pc1fclieu cvc bQ bhng vi~c gidi h~n t~p giai phap chuifn.
Vi~c ke't h<;1pgiua Logic ma va Thw# gidi di truyin ra dai ti't'Dam
1989 vdi mvc tieuj khai thac u'u diem cua hai ky thu~t rieng Ie. Phh
nhi~u cac ho~t dQngnghien CUud~u t~p tIling vao vi~c su dvng Thu(j.t
gidi di truy€n de tang cu'ang hi~u su[t cua H~ tM/ng ma: trong tru'ong
h<;1pthie'u hvt mQt vai d~c tru'ng cua h~ tho'ng m?1,Thu(j.tgidi di truyin
vh cho phep to'i u'uham thanh VieDva th~m chi lQCcac lu~t m?1.Tuy
nhien, mQt so' nghien CUlldii chI ra phu'dng phap hi~u qua cho phep
cai tie'n cac he tM/ng di truyin bhng bQ d;€u khiin ma ho~c su dvng
t~p lu~t m<1tlm ham thich nghi cho Thuqt gidi di truy€n.
H~ tho'ng ktt h(/p Di truyin- M?1du'a ra mQt phu'dng cach t1fnhien
M giai quye't h~u he't cac bai loan kh6 trong th1fc te', d~ng thai no
ding Dang cao hi~u su[t th1fchi~n cho cac phu'dng phap truy~n tho'ng
khi giai quye't bai loan.
1.2 M{lllg Ndron k~t help vOiLogic mu
Phu'dng phap ke't h<;1pgiua mr;mgNaron vdi Logic ma ra doi ti't'dftu
th~p DieD 1990. Mr;mgNaron va Logic m?1co mQt vai diem chung:
Chung d~u la nhung ham tinh loan dQng, co kha Dang t1fdi~u cWnh
vdi mvc lieu tang hi~u su[t ho~t dQng. Ca hai d~u du'<;1cth1fc hi~n
thee nguyen 19 xu 19 song song. Mq.ng Naron baa g6m t~p h<;1pcac
lien ke't qua l~i hen trong giua cac nut (Naron) tren nguyen t~c: dftu
ra cua m6i Naron du'<;1clien ke't thong qua cac trQng so' de'n cac Naron
khac ho~c tdi chinh no. H~ th{/ng "m?1"xu 19 cac lu~t, nhung lu~t nay
se lien ke't t~p cac dftu ra "m?1"vdi t~p cac dftu vao "m?1".Nhu'Qc
diem chinh cua cac h~ tM/ng "m?1"Ia: r[t kho thie't ke' cd so lu~t ma
3
khi t6n ti;limQt.s6 ht<;1ngIOncae d~u vao va d~u ra eua h~ th6ng. Cae
lu~t mo du'<;1ebi€u dieD nhu' mQt anh Xi;lttt t~p cae bie'n ligon ngii'd~u
vao Mn t~p cae bie'n ligon ngii'd~u ra eua h~ th6ng. Tuy Dillen, d~ co

au'<;1ebQ lu~t mo phai phang va'n ttt cae ehuyen gia, eong vi~e nay
thu'ong ra't kho khan va va't va. Hdn filla, vi~e tlm ra ham thanh VieD
ehinh xae dam baa h~ th6ng di;ltdu'<;1ehi~u sua't t6t cling ra't kho khan.
Mgng Nuron mang li;limQt s6 thu~n l<;1i:kha Dang hQe ttt du li~u qua
khli va t\1'thich ling voi mOl tru'ong khi ni;lpdii'li~u moi vao h~ th6ng.
Mgng Nuron sau khi du'<;1ehua'nluy~n Mi cae ThUll-tgidi h(Jc se co
kha Dang phan,IOi;lidu li~u va nh~n di;lngcac m~u phlic ti;lP.M~t hi;ln
che' eua mgng la: s\1'thie'u h\Jt cae Nuron trong mgng ho~e du li~u
hua'n luy~n khong baa dam: bi nhieu hay khong d~y duo
Vi~c ke't h<;1pLogic m?1voi mgng Nuron du'<;1cthlfc hi~n theo nhi€u
caeh: trong mQt s6 ling dvng, mgng Nuron du'<;1esit dvng eho vi~e thie't
ke'va tinh chlnh cae M thting ma. (j mQt val ling dvng khae, ky thu~t
m?1se hi~u ehlnh cae Nuron trong mgng, ho~e sita d6i ThUll-tgidi huei'n
luy~n mgng sao eho hi~u sua't th\1'ehi~n eua mgng la eao nha't.
1.3 Ke't blip giiia Tlm4t gidi di truyin va m~ng Ndroll
Phu'dng phap ke't h<;1pgiua ThUll-tgidi di truyin voi mi;lngNuron ra
dol ttt Dam 1980. Thurl-tgidi di truyin co kha Dang tlm kie'm hi~u qua
lOr giai teen mien khOng glaD cae 10i giai rQng IOn va phlie ti;lP,no
eho pbep tlm ra lOi giai t6i u'u voi chi phi nha so voi cae phu'dng phap
truy€n th6ng khae. Mi;lng Nuron du'<;1ehi€u nhu' m9t h~ th6ng quye't
dinh pilau lop. Mo hlnh ke'th<;1pDi truyin- Nuron ra dOlvoi mve lieu
Dang eao hi~u sua't phiin ldp cua mi;lng Nuron. Nhu'vh, trong ph~n
ldn cae ling dvng, val tro eua Thurl-tgidi di truyin la h6 tr<;1eho mi;lng
Nuron hay h~ ehuyen gia.
Trong mo hlnh ke't h<;1p,Thurl-tgidi di truyin du'<;1ethie't ke' duoi
di;lng m9t mo dun d9C l~p ghep e~p voi mi;lng Nuron ho~e nhii'ng mo
dun Hnh loan khae, no se hi~p l\1'e cling VOl cae mo dun nay M giiii
quye't bai loan (thu'ong no du'<;1eap d\lug d€ tlm ra lOigiai t6i u'u).
f 1.4 Ke't blip Tlm4t gididi truyill, m(lllgNdrollva Logicmu
f)~ giai quye't hi~u qua nhi€u bai loan phUe ti;lPtrong thlfc te', dol

khi pilaf thie't ke' nbung mo hlnh lien ke't ca ba phudng pilar: Thurl-t
gidi di truyin, m(fng Nuron va Logic m?1.Ba thanh ph~n cd ban cua ky
thu~t Hnh loan m€m nay se h6 tr<;1b6 sung cho nhau trong qua trlnh
giiii quye't m9t ung dvug ev th€.
4
1.5 M6 blnb ke't hqp ba ky tbu~t Di truyhr, Ndro", Mu giai bai
toaD phlin lo~i mdu t6ng quat
Be chi ra Hnh kha thi cua vi~c ke't h<;1pba ky thu~t ThuQt gidi di
truyln, Logic mil va mgng NrJron. Lu~n an dIng d~ xua't mQt s6 ma
hinh Mt hf/p rieng. Nhii'ng ma hinh ktt hf/p nay du'<;1ckiem chung
thOng qua mQt ling dl,lng, do la bai toan pMn logi mliu tdng quat voi
hai lop bai loan: pMn logi mliu khang mlft mat thOng tin: chung th\fc
mall, phan lOpmall va phdn logi mliu bi mat mat thOng tin.
1.5.1 Blii toaD phlin lo~i mdu
Cho nj, i e {l,2, ,n}, nj;t0; va 12 la mQt phan ho1,lchcac nj. Bai
loan phan IO1,limall tang quat la bai loan xac djnh anh x1,l:
p :n~{1,2, ,n}:VX en, p(X)=i(nghia laX en,).
T6n t1,lihai nnh hu6ng voi mall X
- nnh hu6ng 1: KhOng ma't mat thOng tin <:>xen.
- nnh huo'n~ 2: Bj ma't mat thong tin <:>Xmmlt~n.
Voi nnh hu6ng I chlnh la bai loan dii trlnh bay.
Voi tlnh hu6ng 2 phai phl,lc h6i Xmmllv~ Xph~c_Mjsao rho
Xph~c_Mjen,r6i moi phan lo1,liXphKMjv~ nj, ie {1,2, , It}.
Lu~n an xem xet hai d1,lngcua bai loan phan IO1,lim§u:
(I) Bai loan chung th\fc m§u (phan bi~t THATI GIA):
Tru'ong h<;1pn=2=> Q = QTH,4.T U QGlA .
(2) Bai loan phan lOpmall:
Xel de'n hai lru'ong h<;1p:
- Tntllng hqp 1: M§u X la mQt vec td: rho 12la mQl pIlau ho1,lch
cac nj, ie {1,2, ,n} va X=(X" X2, ,XJeO. Xac djnh ie {I, n}: XeOj.

- Truong hqp 2: M§u X Ia M vec ld:
rho 0 la mQt phan ho1,lch cac {OJ, ie{l,2, ,n}} va m§u
X ={xJ=(x(, xi ",.,xI):xJ en, J ={1",.,M}}.Xac djnh i sao rho XeOj.
1.5.2 Ke't hqp Vi truyt". Mu: Ma /ri,,/r FL_EA giai bai toaD
. c/runK t/r!te mliu (phftn bi~t TH~ TI GIA)
Xua't pIlat tit bai toan phon loqi mliu tdng quat (ml,lc 1.5.1). Xet
tru'ong h<;1pn=2 => 0= °TII,4.Tv °GlA : bai lOan cllling thlfC mlil1
(pMn birt THA T/GIA.)- Xac dinh "mliu' dang xem xer co phdi ld
"mliu' gaG cho trllek khOng? Be giai quye't bai loan, lu~n an de xua't
mo hlllh ke'l h<;1pThuQl gidi titn hoa (bie'n the cua ThuQt gidi di
truyln) va Logic mil. Xem d~y du ve phu'dng phap t1,liml,lc 2.1
5
(chu'dng 2). Dng d\mg thlfc te'cua phu'dng phap: Cht1ngthlfe Anh trlnh
bay trong chu'dng 4 (ung d\mg 1).
1.5.3 Ke't hQ'p Di truyin- Ndron- Mll giiii bai loan phlln lup
mau (XeQ)
Xet bdi tadn pMn laf,limdu tdng qudt (m\lc 1.5.1) voi tnf(Jng hl;1pn
nguyen dl/ung ba't ky. Tuy nhien, m\lc nay chi quaD Him de'n noh
hu6og 1 (m\lc 1.5.1): PMn laf,limdu kltong mdt mdt thOng tin: X day
drl d(ie trllng ~ XED. De giai quye't bai toaD, lu~n an d~ xua't b6n mo
kink: mf,lngNdran truyin thling biz lOp; mf,lngNdran miYtruy€n thling
b6n tang (xem m\lc 2.2 thuQc chu'dng 2); Thu~t gidi di truyin kit h{1p
ede 1/u;mgNClrantruy€n thllng ba lOp (xem m\lc 2.3 thuQc chu'dng 2);
Thu~t gidi di truyin lien kit ede mf,lng Ndran miY (xem m\lc 3.1.6
thuQc chu'dng 3). Vi~c so sanh de chQn IQc mo kink ktt h{1plo't nhdl
trong b6n mo hlnh tren du'l;1cminh hol.!trong ung d\lng thlfc te': Nh~n
df,lngk:YIlf viti lay (ung d\lng 2, chu'dng 4).
1.5.4 M6 hloh ke't hQ'p Vi truyin- Ndron- Mll giiii bai loan
philo lo~i mftu co m{(t mat th6ng tin (Xmnrtt~O)
La bai loan phIlOlol.!im§u t6ng quat voi nnh hu6ng 2: PhIlo lol.!i

m§u bi milt mat thOng tin <=>Xmmtt~O.De giai quye't bai tmin, d~u
tieD, phai ph\lC h6i Xmmttv~ XphKh&isao cho XphKh&ieO,r6i moi pMn
lo~i Xph¥cj,&iv~ 0;, ie {I, 2, , n}. De ph\lC h6i m§u X, lu~n an d~ xua't
mo kink ke't hl;1pThUf)tgic1idi Iruyin- mf,lng Kahanen- Logic miY- bQ
nhcJ kit h{1p(AM). M\lc 3.2.2 thuQc chu'dng 3 trlnh bay chi tie't mo
hlnh d~ xua't nay. Sau khi ph\lc h6i, thu du'l;1cXphKM;eO. De phIlO
lo~i XphK!1&iv~ Oi, ie {I, 2, , n}, chQn llfa tit b6n ky thu~t phIlo lo~i
nhu' trong m\lc 3.2.2 thuQc chu'dng 3. Dng d\lng thlfc te' cua bai tmin:
PMn laf,limdu van lay mdt md.t thOng tin (ung d\lng 3, chu'dng 4).
1.6 Tom t~t chu'dng 1
TEnhtadn thOng mink vdi n~n tang la cac ky thu~t Hnh tOaDm~m:
ThutJ.tgidi di truyin, mf,lng Ndran nhan tf,la va Logic miY dii titng h}
cM d€ nghien CUuva Om hieu tit kill Mt d4u chuyen nganh khoa hQc
may tinh (tit Dam 1940). Chu'dng nay dii t6ng ke't mQt s6 nghien CUll
dii co v€ vi~c ke't hc;lpqua l~i giii'a ba ky thu~t cua tfnh tadn thOng
mink: Thu(1tgidi di lmy!n, mf,lngNdran va Logic miY.D6ng tMi, gidi
thi~u mQt s6 mo hini, ket h{1prieng (d~y du xin xem trong cac chu'dng
2,3 va 4 cua lu~n an).
6
Chu'dng 2
MQT so MO HINH KET H<;1PcAp BOI: DI TRUYEN-MeJ,
NdRON-MeJ. DI TRUYEN-NdRON
2.1 Thu4t gidi tit" h6a ke't hllp Logic mil: InOhin" FL_EA giai bai
tmin chung tht1c miD (phan bi~t TB~ T/GIA.)
2.1.1 Md d~u
CMng th(lc mllu (phlln bi~f TH~ T/GL.\): tnt(Jng h<;1pn=2 trong
nnh hu6ng mdu khOng mdt mdt thOng tin cua bai loan phan lo{li mdu
tOng qudt (mvc 1.5.1). Hai loan du'<;1cphat bi~u nhu'sau:
ClIo tru'dc !1TH~T:KhOng gian cac m~u TH~ T;
nc.IA: Khong gian cae m~u GlA.

Vdi !1=!1TH~TU!1mA;!1TH~T'!1mA'~0 va !1TH~T('\!1mA=0.
Hie't: M~u dang ky Ae!1TH~T;M~u dn chU'ngnh~n Xe!1.
It
{
~ .
}
Canxacdinh: p:.!1~ TH~T.GlA saocho
VX!eO, 3ie{TH'; T,GIA}:p(X) = i(nghia [aX eO,).
Th1,J'cch~t. day la bai loan chU'ng th1,J'cm~u X: Tim phu'dng phap
phan loai m~u X Ia THAT hay GlA mot cach nhanh nh~t. Qua trlnh
gild quye't bai loan du'<;1ccilia thanh hai giai do!;!n:Bang ky m~u d!;!i
di~n Ae !1TH~Tva chU'ngnh~n m~u X la TH~ T (X=A) hay GlA (X;tA).
. Giai do{ln 1: Dang IcY
(1) Nh~n mQtm~u Ae !1TH~T'
(2) Hie'n d8i A v~ vec td h
(3) Tim cay nhQn dr,zng_nM.p tM t(l duy~t) d1,J'atren A va TA.
. Giaido(ln2: CII/ingnlz(m .
(4) Nh~n m~u dn chU'ngnh~n X
(5) Hie'n d8i bi8u di~n l!;!iX du'di d!;!ngyec td Tx.
(6) Sit d\lng cay lIMn d(lng_n de chU'ngnh~n Tx ==TA?
Ntu dung ke't lu~n: Xe!1TH~T"grl(lc [{Iike't lu~n: Xe!1mA.
Mo hlnh ke't h<;1pLogic mil va ThUlJtgidi titn hod (EA- Bien thl!
clia ThuQt gidi di truy~n) du'<;1csit dvng d8 thlfc hi~n cac giai do!;!n
ghH quye't bai loan.
2.1.2 Bie'n d6i m(f biiu di~n l~i miD
Dinh nghia 2.1 (ma trQnthObi!u di€n mllu)
ClIo tru'dc mQt anh con G cua mQt m~u. Dung t byte (t nguyen;
t~l) bi8u di~n mU'cxam cua G. Gia Ui E(G)e{O, ,(2/x8-1)) la gicitq
mU'cxam cua G.
7

M6i m§u du<;lcphiin thanh LxK anh con G;J(i=D" ,L-l;j=O, ,K-l;
gici trj L va K tuy thuQc vao ph~n m~m quet anh), thu du<;lCma tr4n
thObitu diln mduALxK sao cho: A;J=E(G;J) (i=D L-l;j=D K-l).
Djnh nghia 2.2
(bienddi mil)
Cho trudc gici trj d~u vao ae{D, ,(2,x8_1»). Biln ddi mu CURa Ia
phep bie'n d8i su dl}ng ky thu~t "mil" (chi tie't v~ ky thu~t m(j xem
trong phI} ll}c G) d~ pban ldp l~i ghi trj CUR a v~ mi~n
BD~r~""~O~C«2x1~ X., X
(I"'" 1 +1))., I""" ( +1)"., I""'" ( +I))>o(~') (""" ( +1)>« "'.1
Hlnh 2.4 Bi8u di6n "mo" bien d5i giil tri a v~ mi~n (0,
"" d.
3vte {D, ,e) ta c6 BDM(a)=vt: JL",(a) = Max fIL,(a)}.
1.0
. Djnh nghia 2.3 (ma tr4n rut g(Jn)
Cho trudc ma tr~n thO bi~u di€n m§u LALXKJ,Cho trudc kfch thudc
hang M va kich thudc cQtN. Ma tr4n rut g(Jnbi~u di€n m~u LA'MXNJIa
mQtRG trunKbinh (Rut gQn trung blnh) CURma tr~n LALxKJsao cho:
{
A;.J(,.O M-I.J.O N-I)=RGtrungbinh(A".){t = O L-I,k = 0 K-I
A;,Je{O, ,(2'" -I)}
(Xem thu~t giai rut gQn trung blnh (Jdudi).
Djnh nghia 2.4 (ma trq.nrut g(Jn nmiln)
Cho trudc' ma tr~n nit gQn LA'MxNJ.Ma trq.n rut g(Jn "miln LBMxNJ
la mQt "bien adi mu"(djnh nghia 2.2) CURph~n tu A'iJCi=O"M-/;i=O"N-/)sao
cho:
{
(
,
)(

)
B',J(':O M-I,J=O N-I) =BDM',J A',J i =D M-I,} =D N-I
B',JE{O, ,e} !
Djnh nghia 2.5 (vee td a{le tr/ing)
Cho trudc ma tr~n rut gQn "ma" LBMxNJ,We id d{ie trunK F CUR
m§u la: F=(fO,fI,fZ, ,fMxN-l); trong d6, /;=B;div N,; modN;(;=O.,}.{xN-I)'
Rutgon trung blnh(RGtrum!binh)
Tinh
trung
blnhA'ij
i=1 L
J
L=L/2
LALxK
l
K=KI2
T. T<'
L=M
vAK=N?
Y"'
thOil ~ LA'A(XNJ
8
Miu dang ky (A) va mill c!n chUng nh~n (X) d~u du'l;Icbi€u di~n
l~i du'oi dillJ;lghai vec td d~c tru'ng TAMxNva TXMxNthong qua cac bie'n
d6i tit cac djnh nghia dii trlnh bay CIteen. Viln d~ con I~i la: xet xem
XEnTH~T7Hay n6i dch khac phiHso khdp xem:TXMxN=TAMxN7
Luc nay, cdy nMn d{mg_n du'l;Icxay d1!ng vdi tieu chi xac djnh
cay 1ft"PIlat hi~n GIA.nhanh nhilt". Ghi djnh tieu chi du'<;1cbie't tru'oc
va du'l;Ic56 boa thanh ham l/./{1ngKia, su d\lng Thu(it gidi tie'n hod
M

gi.H quye't bai loan nay (Th1!chi~n hai bu'oc (3) va (6».
HiBu Quacua bie'nd6i mil trOnl!viac bilu diln lai delit/./um!
Dinh nghia 2.6 (sai s5 bie'nddi ())
Sai s5 bie'n d6i ()li't sai 56 thu du'<;1ckhi anh x~ ma tr~n tho bi€u
di~n mill LALxKJ;A;,jE(O, ,(2'X8-1)},t~l(t nguyen), i=l L; j=l K v~
ma tr~n rut gQn "mo" LBMxNJ;Bm,nE{O, ,c}, O<c«2'X8-1), m=l M;
n=l N vdi l<M ,;,aM 1ftu'oc 56 cua L; l<N va N 1ftu'oc 56 cua K.
Dinh nghia 2.7 (~g/./{ingsai s5 E)
Ng/./iJngsai s5 E1ftngu'6ng sai 56 cho phep d€ anh x~ ma tr~n tho
LALxKJv~ ma tr~n rut gQn "mo" LBMxNJ.
Dinh If 2.1 (xac djnhsai s5 bitn ddi ())
Cho tru'ocma tr~n tho bi€u di~n mill LALxKJ;A;jE{O, ,(2'X8-1)},
t~l(t nguyen), i=l L;j=l K va cho tru'dckich thu'dcM, N cua ma
tr~n rut gQn "mo" LBMxNJ;Bm,nE{O, ,c}. O<C«2,x8_1),m=l M; n=l N.
Luc nay, ,rai,r5bie'nd6i ()du'l;Icxac djnh theo cong thac sau:
(}:(}.x£Jz (2.1)
trong d6, ().lit 5ai 56 thu du'l;Ickhi anh x~ ma tr~n tho LA, xKJ
v~ ma
tr~n rut gQn LA'MXN
(
~dj~h nghia 2.3). ~6 du'l;Icxac djnh theo cong
thac: L L tilech R "
)
6, = R-I ' /'i £ K (2.2)
({; ~I A',J)
£Jzlit 5ai 56 thu du'l;Ickill chuy€n gia trj cua cac pIlAu tu ma tr~n rut
L
'
J
'Ix8 '

gQn AMxN; Am,nE{O, ,(2 -I)}, m=l M; n=l N ve mIen {O ,c}
cho tru'oc d€ co du'l;Ic ma tr~n rut gQn "mo" LBMxNJ. £Jzdu'<;1cxac djnh
theo cong thac: 9 - l/,
2 - /(c + 1) (2.3)
H~ qmi 2.1
Cho tru'dc ma tr~n tho LALxKJvit ng/./{ingsai s{l E . Ch~c eh~n xae
djnh du'<;1ekieh thu'dc cua ma tr~n rut gQn "mo" LBMxNJne'u co t8n t~i
gia trj u'oe 56 M, N cua L, K 5ao eho ,rai,rt;'bien ddi ()(djnh Iy 2.1) ~ E.
9
2.13 Thu~t gi:~itie-n hmi'Hm cliy nMn dll-ng_n t6i tfu
Blnh ngbia 2.8 (cily nhQndr,mg_n)
Cho tru'de hai s5 nguyen du'dng n, L va P={O, ,e,v}L; P={*}uP.
Cay nh~n dr,mgco dil rilng n teen P Ia bQ 4: A=:(V,E, e, 8). Trong d6:
V Ia t~p dinh; E Ia t~p nba,nh; T Ia t~p cae d5i tu'Qngdn kiem tea (t~p
n nut dich (g6m n nut hi », T~V; anh x<}.E :(V\ T)x{+,-)~E; anh x~
8 :V~
PsaD cho 8 -l(*)=T. Ta gQi E(v,+),E(v,-)Ih Iu'QtIa nhanh the'
tnii hay nMnh the' phiii cua ve Vva (V, E) gQiIa diy n~n.
Bai loan d~t ra Ia vdi t~p P i::hotru'dc, ta tlm cay nh~n d<}.ngt5t
nha't theo mQt lieu chi cho tru'de. Vdi gi<\dinh Ia lieu chi du'Qc bie't
tru'dc va du'QCs5 hoa thanh ham lll(fng gia, su d\lng Thugt gidi tie'n
hoa (mQt bie'n the cua Thu~t gidi di truyln) giiii bai loan tlm kie'm t5i
u'u nay, B~t d~u tit quh the A eua cac ca the (cac diy) co dQrQng n,
giii dinh ham lll(fng gia f cho tru'dc, m6i ca the AeA du'QCdaub gia
b<'Jigia triftA)eR+, ta dinh nghla cac phep loan di truy~n nhu'sau:
Blnh nghla 2.9 (cae phep di truyln roan elte)
NhOm eae phep di truyln roan elte lac dQng Ien loan diu truc diy
~
gom:
Tait{Zo:cho phep chQn IQcnhung diy nh~n d<}.ngtrong A vdi mQt xae

sua't tu'dng ung vdi ghi tri Iu'<;1ngghi cua ehung (tu'dng tv nhu' loan tu
tai t<}.othong thu'ong),
wi: Cho hai diy nh~n dc,lOg:A=(V, E, e, 8) va A'=(V', E', e', 8'), ChQn
ngiiu nhien e:w~v, vdi e~ E va v'l.T (t~p cac nut Ia), Phep "Lai"
khong thvc hi~n ne'u: nA.(v')#:nA(v),V'v'eV', Trong tru'ong hQp khac,
phep "Lai" du'<;1cthvc hi~n nhu'sau: ChQn v' eE' saG cho nA,(v')=nA(v).
Thay the' e:w~v b~ng f:w~v' va Av b~ng A' v ~ t<}.ora cay mdi
B=(W,F,)1,v) tit A va A', Tu'dng tv, chUng Wi cling t<}.odu'<;1cdiy mdi:
B'=(W',F',ji',v') tit A va A'.
Phep loan nay dam bao khOng Him anh hu'<'JngMn diu truc ngu
canh trong diy, no chi cho phep traG d5i diy con Av va A',. ne'u
nA(v)=nA'(v') va 8(v)=8'(v'),
Switch: Dng d\lng teen diy nhi pilau cling tu'dng tv nhu' phep loan "dilt
bie'n" ung d\mg tren chu6i. Phep loan "dilt bie'n" cho phep bie'n d5i
mQt bit tit 0 v~ 1 ho~c tit 1 v~ O.
Phep loan switch du'Qcung d\lng ph\l thuQc vao mQt dinh v trong
cay nh~n d<}.ngdQ rQng n: Cho A=(V, E, e, 8) vdi dQ rQng n, Phep
10
switch thOng ho<,ltdQng ne'u: l' e T (t~p cac nut hi). Trong cac tru'ong
hQp khac, phep "switch~ cho phep t<,lodiy mdi c6 dIng dQ rQng
n:A:=(V,E,e:,c51 trong d6 e::(V\T)x{+,-}~E trilng khdp
vdi E, ngo<,litrU'dinh v. T<,Iidinh v,
e:(v,+)=e(v,-)du'Qc thay the'
b~ng e:(v, -)=e(v,+).
Translocation (chuytn dich): Cho diy nMn d<,lngco dQ rQng n:
A=(V,E,E,O). ChQn mQt vai dlnh ve V va mQt vai nut la te T. Phep
"chuy6n dich~ cho phep thay the' A boi mQt diy nh~n d<,lngmdi:
Av,t=(V",t=V,Ev",tv",o",t=O).T~p nhanh Ev,tchua cac nhanh con ev,t, vdi
m6i nhanh e:Vl~V2 trong E, ev,tdu'<;1cdjnh nghia nhu' sau: Ne'u v2#,t,
thl ev,t=e; ne'u V2=V,thl xay dl!ng mQt nhanh mdi ev,t:vl~t; ne'u v2=t,

thl xay dl!ng mQt nMnh mdi ev,l:vl~W, vdi w='t"(dlnh cua A) ho~c
w=v, ph\! thuQc vao teAv hay khOng. Anh X<,Itv,l du'<;1cxac djnh theo
cach sau: B~t Ev,,(!"',+)=E{w,+)v,1thay the' Ev,,(W,-)=E{w,-)v,tcha bllt cu
weV\ Tnao.
Djnh nghia 2,10 (cdc phep di truyin vi m6)
Nh6m cdc phep
di truyin vim6 lac dQngten cac thanh ph~n cd so
cua cay:
VUai: Ph\! thuQc vao anh X<,lX :PxPxJ~PxP, trong do J =[0,1],
Trong ph~n ldn cac ung d\!ng, P se tro thanh t~p (O, "C,V}L
ho~c{O, "c'vrXJ, va vdi mQi jeJ, anh X<,lPxP~PxP se tro thanh
phep "lai" cua mQt nhom ho~c t<,limQt vj trl du'<;1cxac djnh boi j. Xua't
phat tir c~p cay nh~n d<,lngdQrQng n: A=(V,E,E,O)va A'=(V',E',E',8'),
chQn ra mQtdinh khong phiii la nut hi ve V va v' e V'. Ne'u co mQt bie'n
ng~u nhien randel, thl "VUai" se thay the' 8(v) va 8'(v') b<'liq va q',
xac dinh b<'li(q,q')= x[8(v),8'(v'),randj. Trang phien ban tho, v va v'
du<;1cchQn ng~u nhien. Trong phien ban dii tinh chinh, loan tit se xem
xet P c6 phil h<;1pvdi (ki€u, gia trn khong, va chi cho phep .VUai"
giiYacac c~p vdi cilng thanh ph~n ki6u.
VCdQt bitn: Du<;1cxac djnh b<'limQt anh x<,l:}1:PxJ~J vdi J nhu' <'I
teen. Ne'u P={O, ,C,V}L,co th6 xem }1nhu s1/thay d6i cua mQt ph~n
tit t<,livj tei du<;1cxac djnh boi j, thong qua anh X<,l
P -+ P . Trong
tru'ong h<;1pt6ng quat. vdi ba't cu veV\ T, gill trj 8(v) cling co th6 du<;1c
thay the' b~ng }1[8(v),randj;t8(v) (randeJ la mQt gill trj ngh nhien).
Vdi cac phep di truyin djnh nghla nhu' teen, ta co th6 ling d\!ng
Thugt gidi titn hOaEA M xac djnh cay nMn d<,lngt6i Uu.
11
Thuat Iliai titn hoa xav dune mi2n cav nhtin dam: n to'i rtu
(1) t:=O;

(2) Khi'1it'!-oA(t)=(Ah Az, , AM);
(3) Trong khi (I>i~u ki~n ket thuc l~p 1(A(t»*True)
- LU'<jnggill A(t)={j{A,),j(Az), ,j(AM»);
- t:=t+1;
- ChQn:A'(t)=(A'h A'z, , A'NrcA(t-1);
- Lai: R(t)=R(A'(t»; vdi xac sua'tlai Pc
- DQtbien: M(t)=M(R(A'(t»); vdi dc sua't dQt bienp,"
- Chuyen djch:T(t)=T(M(t»; vdi dc sua't chuy~n djch P,
- Vi 1ai:J1c(t)=J1c(T(t»; vdi xac sua't vi 1ai p 11.
- Vi dQt bien:/1m(t)=J1,.(J1c(t»; vdi xac sua't dQt bien PPM
- ChQn:A(t)=A(A(t-1)uR(t)uM(I)uT(t)UJ1c(I)UJ1,.(I»;
Het HiD
Thuat Iliaititn hoa chrlnllt11UCnuiu{vhtinbUt THAT/ GIAI
Cho trU'dcP=(O, "C,V')Ldang ky, dn chUngth1,J'cF=(O, ,C)L.Neu
F tri1ngvdi P thl ket 1u~n:F 1aTH~T ngU'dclai ket lu~n: F la GIA.
PhU'dngphIlp truy~n th5ng ghii quyet bai loan la vet c'!-n:duy~t, so
sanh I~nIU'<jtcac ph~ntu cua hai vec td F va P theo t~ptht1t1,J'tit l L,
neu g~p mQtphh tu sai khac thl ket lu~n: F la GIA, trU'ongh<jpmQi
ph~n tu cua hai vec td d~u gi5ng nhau thl ket lu~n: F la TH~T. Vdi
phU'dngphap'nay, c6 h,!-nche: neu phan tusaikhacn~mi'1cu5ivec td
thl chi2u dai cay clllinglhlfc_n =L (phi 16nthUQlgiai /Un).V~y dn
thiet phciitlm ra mQttQPt/llitlf duy~tt5i U'u(cay clllingthlfc_nt5i U'u)
giup cho vi~c so sanh vdi lieu chi la: phat hi~n GIA nhanh nha't.Su
dl,mgThuQtgidi tie'nhod (EA)cho bai tOllnnay.
2.2 Ke't hc;tpm~ng Ndron vOiLogicmil: m~ngNdron mo (FNN) giiii
bai tOilnphIlo lUpmiu (miu la 1vec td)
2.2.1 Md dllu
Quay tri'1I,!-ibizitodnphtin lo{limdu t6ng qudt (trU'ongh<jpphtin
tap mdu khOngmat mat thOngtin). Luc nay, m~udn pMn Idp (X)c6
th~ dU'<jcdanh gia theo'mQtho~c nhi2u lieu cM khac nhau. M6i lieu

chi daub gia x se dU'~csO'hOav~ mQtvec t(jtu(jngI1ng.NhU'v~y, bai
loan phan Idp m~uXchia thanh hai bai loan con:
12
Mallx g6m 1 vec td (MQt lieu cM duy nhdt dank Kid X).
MJu X g6m M vec td (X dll(/cdank Kid bifi M tieu cM).
M\1cnay t~p trung tlm hi~u va giai quye't Ba.iloan phan lOpmJu X
g6m 1 vec rd. Bai tmin d11'<;Icdinh nghia nh11'sau:
Cho ala mQt phan ho<;1chcac {O;,i E{t, 2 , n}, 0; *0} va miiu
X=(XIoX2 Xt.)E 0. Xac dinh i E{t, II}:X EO;.
2.2.2 M~og Naron mu philo lOp m~u
A. Cd cIte'ho<;ltdQng, diu truc cua m<;lngNdron ma (FNN)
Cd elle' hoar donf: khi mQt miiu d~u vao d11'Qccung c1lp. ailu tien
m<;1ngse mClh6a miiu nay va Hnh loan dQ thuQC(muc dQgi6ng Mall)
gifi'a miiu vai H(tca cac miiu dii hQc, tie'p theo, m<;1ngse d<;1td11'<;IcmOt
ke't lu~n bi'1ivi~c chQn ra mQt miiu dii hQc c6 dQ thuQc cao nh1ltso vdi
mliu d~u vao, cuol cung tie'n hanh khu mCl,r6i gtti n6 Mn mQt d~u fa.
Cdu truc cua man$!:g6m 4 t~ng.
- Tilng tM nhat (lIMp): Nh~n mliu nh~p vao m<;1ng.G6m N1xN2
INPUT-FN trong tr11'Clngh<;1pmAllnh~p c6 kich th11'deN,xN2 ph~n ttt.
- TOngtlll1hai (ma h6a): M<1h6a cae mAll nh~p thOng q\Ja ham trQng
so' w[m,n]. G6m N(xN2 MAX-FN hiSn thi theo hai ehi~u. M6i MAX-
FN co M d~u ra
=s6l11'<;1ngFN trong t~ng thu ba. Trong d6, y~im la
d~u ra thum cua MAX-FN th\1'(p,q) co gia triE[O.I] d11'Qclien ke't vdi
MIN-FN th\1'm trong thg th\1'ba, no philo anh dQ thuQc gifi'a phh ttt
(Jvi tei (p,q) cua miiu nh~p vdi phh ttt t11'dng\1'ngcua miiu hQc th\1'/11.
- TOngtM ba (bilu diln dQthuQc vao /1IJuhQc): G6m M M/N-FN, m6i
M/N-FN trong t~ng nay bi~u dieD dQ thuQc cua mAlldang xct vai mQt
miiu dii hQc(M la s61u'<;1ngcae miiu dii hQc).
- TOng tM tll (TOng xudt - khil mal: ChUng t6i dung M COMP-FN

trong thg nay t11'dng\1'ngvai M mliu dii hQc, cho phcp eung c1lpcac
d~u ra dii khtt mCl(1 ho~c 0). M\1c lieu cua t~ng nay Ia: xac dinh mliu
nh~p thuQc v~ miiu nao trong M miiu dii hQc. Tim dQ thuQc Ian nh1lt.
Ne'u tho.1 ngu'ong T cho phcp d~t la I, cae gia tri con l<;1icho v~ O.
Trong tru'i'1ngh<;1pkh6ng thoa ng11'ongT eho tru'dc th1 M COMP-FN
nh~n gia tri 0: kh6ng thuQc v~ b1ltc\1'miiu nao trong cac mliu dii hQc.
B. Thu~t gidi hQc tlf t5 chllc cua I1I<;lngNdron /1Ia
Cac tham ,wi cein thie't: Cac tham so' cua ham ra d6i vdi cac Naron
MAX-FN trong t~ng th\1'hai: dQ rQng cua ham thanh VieD a, h~ so'
mClhoa f3va 9pqm(cho tung t~p p, q va m). so' 1u'<;Ingcae FN trong
13
t~ng thU'ba va thU' t\1'(M). Tf la ng\1'ong 16i eua m(,lng Ndron roo
(FNN) (O<=Tf<=I) va Kia t6ng 56 cae m~u hua'n luy~n (k=1 K).
Cae bll(Jceila thuat ~?idihoc:
BlI(Jc 1: T<,tocae m~u INPUT-FN kieb eo NIx N2 trong t~ng tM nha't
va cac mftu MAX-FN kieb co NIx N2 trong t~ng thU'hai. ChQn mi?t
gia tricbo a (ex>=0) va mi?tgia leithichh<;lpcho{3. .
BlIae 2: f)~t: M=Ova k=l.
BlIae 3: f)~t M=M+l. T<,tora Ndron MIN-FN thU'M trongthg tbU'ba
va Naron COMP-FN thU'M trong t~ng thU't\1'.Xac djnh:
[2J N, N, ,.
e
pq
M =S
pq
M =max (max (W[p-l,q-j]Xljk»
1=1 /=1
p=I,N1;q=I,N2
(2.13 )
Trong d6, epqMla diSm teQngHim cua ham ra M eho Naron MAX-

FN thU'(p,q) trong t~ng iliU'hai. Xk=(xijd la m~u hua'n luy~n thU'k.
BlIcJc4: f)~t: k=k+l.
Ne'u k > K th'i thu t\lc hQc5e ke't thuc,
Ngu'qc l<,li
- Nh~p mftu hua'n luy~n thU'k vao m<,tngva tinh loan d~u ra cua m<,tng
Ndron mo hi~n t<,ti(vdi M Ndron mo trong t~ng thU'ba va thU't\1').
- X:icdinh: M
. (j =1- max(iJI)
I" Ik
trong d6 y~;1 Ia d~u ra cua MIN-FN thU'j trong t~ng thU'ba U'ngvdi
mftu hua'n Iuy~n thU'k (Xk).
-Ne'u 8 <=Tfth'i quay I<,tiBlIae 4.
- Ne'u 8>Tfth'i quay I<,tiBlIac 3.
c. Hi~u qua eila Thu(it gidi hQc H!t6 chile
Dinh Iy 2.2 (Thu(lt gidi hQc elft6 chuG tlm cdu truc nlgng)
rho tr\1'ocmQt mh hua'n luy~n
l
XNxN.
r
va T mftu dich (56 Naron
I 2
l J
'
d~u fa (t~ng thU'hi» vdi ma tr~n tr<,tngthai tu'dng U'ng (JNI,N2.t =I,T.
Cho d9 rQng ham tbiinh VieD a ~ 0, M 56 mo boa (3va ng\1'ong16i
Tf' Luc nay, 56 lu'<;IngNaron trong t~ng thU'ba va thg iliU'tu' cua
m<,tngmo (M) du'<;Icxac dinh I<,tinhu'5au:
M
=T+ f;(5,Tf)
.

[
0 neu8-Tf~O
trongd6. f.(8,Tf)= I ntu8-Tf>O
(2.14)
(2.15)
T [3]
8 = 1- ~ax (Y
j
' k)
J=I ,
va
14
y~l :Ia d~u ra t~ng tha ba cua m~ng roo: daub gia d(}thu(}ccua
miu hua'nluy~nk vao miu dichthaj.
H~ qua 2.2
Cho K miu hua'n luy~n va T miu dich ban d~u. sfi Naron tfii da
dlt<1cb6 sung trong t~ng tha ba va t~ng tha tit cua m~ng mo 1£1K
Naron.
Luc nay,
H~ qmi 2.3-
Cho K miu hua'n luy~n va T m1iudich ban d~u. Trong trltong hQp
tfii thicgu,se khong c6 ba't ca m(}tNaron mo nao dltQc b6 sung cho
t~ng tha ba, ding nhlt t~ng tha tit cua m~ng.
Luc nay, M=T (2.17)
2.2.3 So sanh m{lng Ndron mu yoi m{lng Ndron trllyill tTrang
Bang 2.1 So sanh thoi glaD hua'n luy~n giil'a thu~t giai hQc tlf t6
chUc FN va thu4t il1iIan tru ~n n l.iqc (NN)
Phltdng phap sfi chii'hua'n T~p miu ThiJi glaD
lu ~n man dich hua'n lu ~n
FNN 5460 26 273 ( hut)

NN 5460 26 9555 ( hUt
Bang 2.2 So sanh ty I~ nMn d~ng (%) giil'aFNN va NN (kicgmtea
M=T+K
(2.16)
FNN ili xu{{t illlf/c so sdnh va; NN trang biti todn Nhq.n dr;mg chi]
viet tay.Vi mvc 2.2 t~p trung giai quye't bai loan phan lop m1iu x
(tru'ong hQp miu x 1£1m(}t vec td), Den cac chii' vie't lay dltQc thti'
nghi~m voi m(}tlieu chi daub gia duy nha'1:vec ta il{ic trlfllg foa" qtC
8x8. Bang 2.1 va bang 2.2 phan anh ke't qua so sanh giil'a mr;lIIg
NaronmiJbOntting(FNN) va nu;l1IgNarollba tting(NN)khi dung voi
cac chil' thti' nghi~m (bicgudi~n bdi vec ta il{ic trlmg toan C!lC8x8)
thlfc hi~n teen may Pentiumll-PC 266 MHz. Nh~n tha'y, FNN hi~u
qua hdn NN ca v~ thiJi gian hua'n luy~n cling nhlt ty I~ nMn d~ng:
FNN Ia kha thi va c6 thcgap dvng n6 cho bat loan phan lOpmiu.
15
2340 chii'
Phltdng sfi chii'dung
sfi chii'
Ty I nhn
Ty 1 16i
phap
sai
dang
FNN 2122 218 90.68% 9.32%
NN 2068 272
88.38%
11.62%
2.3 Thu4t gidi di truyill li@nk@'toh!~u m(lllg N(frOIfa:Ull1gdQog eho
bai tmlo pMn lOp m4u (m4u g~m M vee td)
2.3.1 M6 hlnh bai tmlo

Nhu mQc 2.2.1 dii trlnh b~y. bai tmio philo Idp m~u X khong ma't
mat thOng tin duQc chia thanh hai ba.i loan con: Bai toall phan lop
mdu X g6m 1 Vt1ctd (MQt tieu chEduy nhdt danh Kia X) va Bai roan
phan lop mdu X g6m M vec td (X dlt{1cdanh Kia biJiM tieu ch£). MQc
nay se t~p trung tlm hieu va giai quye't Bai roan phiin LOpmdu X g6m
Mvec(d. Bai loan nay duQCdjnhrighlanhusau:
Cho!1 la mQt phan ho~ch cac {!1;, i Ell, 2, , nl. !1; *O) va
m~u X = {xl = (x(, x;, ,xI}:xJ en, J = {I, ,M}}
Xacdjnhie{l,n):Xe!1;.
2.3.2 Cae phu'dng philp li@ok@'tnhi~u m(l1JgN(froll
Co hai phudng phap t5ng quat cho vi~c ke't hQp cua cac mr;mg
Ndron: cach thU nha't d(ta VaGkj thu~t tuyln ch{Jn(p"ltl1ng phdp dem
Borda), con cach thu hai d(ta VaGkj thuQt lien h{1p.Lu~n an tlm hieu
phlt<1l1gphdp d(ta vao kj thu~( lien h{1p, vdi phlt<1l1gphdp nay, vi~c
phan lo~i mQt m~u nh~p X dtla vao t~p cac gia trj thl,l'c:P(!1;IX), I S;i
S;11,cho bie't xac sua't de X thuQc mQt trong n Idp ban d~u. Sd d6 lien
ke't m~ng bao g6m M nl{lng Ndron, I phep tinh tren m6i m~ng se t~o
ra mQt t~p cac gia trj xac sua't dung nhu sau : PI (!1; I X), IS;IS; M,
IS; is; n. MQt m~ng ddn gian ke't hQp cac ke't qua teen m~u X tu ta't ca
M m~ng ca the bhg vi~c su dQng gia trj trung blob dum day nhumQt
Hnh loan mdi cua lien ke't m~ng:
Nhu v~y, co the hieu trj s6 ke't hQp ohu mQt phan ldp trung blob
P(o,lX)=lfp.,(o,lX), l:~i:S;11 (220
MJ-I
cua phudng phap Bayes. Tinh loan nay se duQc cai tie'n ne'u daub gia
kha Dang djnh hudng cua cac d~u ra dl,l'ateen cd si'1cac tri thuc tho
duQc v~ muc dQ tin,5h cua tung .m~ng :
P(!1, IX)
=Lr;PJ(!1, IX), 1:S;i:S;n
. M J-t

0 day Lr;=1.
1-1
(2.22)
(2.23 )
16
2.3.3 Thu~t gbli di truy~n xac djnh h~ s6 tin c~y cho cae dilu ra
CURtung m{lllg Ndron
Trong qua trlnh tinh loan, ThUQtgidi di truyJn anh x~ khBng giRD
giiii phap bai loan len t~p hl;1pcae chu6i, m6i chu6i biEu di€n mQt
giiii phap ti~m Dang.
Trong bai loan nay, mQt chu6i phiii ma bOa nxM thRill 56 gia trj
thlfc (r/) trong bi~u thU'c(2.22), bhg each nay mdi thu du'l;1cnhung
h~ 58 ke't hl;1pt8i u'u cho vi~c lien ke't cae m{lng Nuron ca th~. M6i h~
58 du'l;1cma h6a thanh 2Lbit va du'l;1cdi~u chlnh trong khming tir [0,1].
Sau d6, ThuQt gidi di truyin se thao tac tren cae chulli ma h6a M tlm
kie'm nhung giiii phap t8t hdn U'ngvdi mlli Mn t~o sinh.
Phu'dng phap d~ nghj 5e Ia'y t~p hl;1pcae h~ 58 (r/) CURcae m{lng
Nuron cd tM dB hlnh thanh nhfi'ng chulli ma tu'dng U'ng.
2.3.4 Chung minh Hnh hQi tQ CURThllQ.tgiai di trllyin trong qua
trlnh xac djnh M s6 tin c4Y
Bjnh Iy (djnh Iy v~ Hnh hQi tQ CUREA trong [KTN2000])
Cho EA=(I, cp Q, 1/1.s. 1;J1,A)
Giii thuye't:
(i) KhOng giRDWi giiii /la t~p hUuh~n.
(ii) T6n t~i 1i'1igiiii a* e I
Khi d6, vdi mQi quaIl tM khiJi t{lOprO), EA se thod cdc diJu ki~1Isou:
(I) Dirng 5au mQtso'bll(Jc l{ip hau h{lll: 'fEA<oova
(2) Ke'tquii thu du'l;1cCUREA kill ap d\mg,len quan tM khiJit{lOprO)
HiICJigiiii t8i u'ua*: <1>(0')= min{<1>(a)laeUvr(P(O))}.
Bjnh nghia 2,11 (Sai 56 E) ,

SRi s6 ECURs6 thlfc la sRi 56 thu du'l;1ckhi anh x~ gia trj CUR58
thlfc d6 v~ mi~n [UmimUmax] ba'tky; Umin<Umax.Umin>-oo. Umax< + 00.
M~nh d~ 2,1
Cho tru'dc vec td nhi philo g6m L bit d~ anh x~ mQt gia trj thlfc x
v~ rni~n [UminoUmaJ.Luc nay, SRis6 E CURx 5e du'l;1cde djnh theo
cBng thU'c5au:
£ -(U U_){y
M~nh d~ 2.2 - 2
Cho tntdc sRi 58 E CURmQt gia trj thlfc x. S8 bit nhj philo L dn
thie't dB anh x~ x v~ mi~n [UmimUmax].du'l;1cde djnh theo cBng iliac:
L=Round_UP(IOg,((Umn-Um:f6xd)
(2.26)
(2.27)
17
M~nh d~ 2.3
Cho vec td nhi phan string2 dQ diUL bit bieu dien ghi tri th1,icx e
[Urni",Urnax]'Luc nay, x se dU'(,1cdc dinh theo cong thl1'c:
x = U + decimal (string 2)X g
g =(U.Q - U -)6 L - 1)
(2.28)
trang do,
H~ qua 2.4
T5n t~i chu6i nhi phan string2bieu clietth~ s6 tin c~y r/e[O,I]
thoa sai s6 e E 91 cho trU'dc. .
HI; qua 2.5 (di!m hQitit ella h~ sr{tin el,iy)
Sau mQt s6 bU'dcl~p hil'u h~n, Thul,itgidi di truy€n se Hm dU'(,1cbQ
h~ s6 tin e~y t6i u'u, r/ (J=1,M , i=I,n), ung vdi sd d5 lien ke't M
n/.{lngNaron thoa sai s6 e E 91 cho trU'dc.
2.3.5 Phan tleh, danh gia mo hinh d~ xua't
A. Bai loan flu]nghi~m

De chI ra tinh kha thi cua mo hlnh ke't h(,1p:Thul,itgidi di truyln
lien ke't nhi~u mgng Naron trong phan lap m~u, chung ta quay trC1l~i
bai loan vi dv C1mvc 2.2.3: liMn dgllg ella viti lay. s6 chu thit nghi~m
la 26 chu cai vje't lay thU'ang vdi: lOx30x26=7800 chu, trong do,
7x30x26=5460 chil hua'n luy~n va 3x30x26=2340 chil kiem tea. Cae
chil vie't lay dU'(,1cdanh gia Mi 3 lieu chi khac nhau (3 d~ng d~c trU'ng
ri~ng bi~t): vee ta 4 dge trllng dja phllcmg 4x4; vee ta dge tr/.lflgloan
cite 8x8 va vee ta d{ie trllng bi!u diln bien ella ehil (mvc 2.2.3).
B. NluJn dgng ehil viti lay
Mgng Naron truyln theine ba tdng(NNi} vdi Thu(1tKid; Ian truy€n
ngll{1ese dU'(,1cdung de hQCva nh~n d~ng cac d~ng vec td d~c trU'ng
nay. Cv the, NNI dung rieng cho vee ta 4 d(ie trllng dja phllcmg 4x4;
NN2 dung cho vec ta dgc trllng loan cite 8x8; NN3 dung cho vee ta
d{ic trllng bi!u diln bien clla chil.
Tung m~ng se dU'(,1chua'n luy~n vai 5460 m~u chil va dU'(,1ckiem
tra tren 2340 m~u chu va ding th1,ichi~n tren may Pentiumll-PC 266
MHz. Vdi phU'dng phap nay, m6i m~ng se hlnh thanh quye't dinh
thong qua tieu chuifn rieng cua no.
Sau khi hua'n luy~n ca ba mgng Naron vdi cac d~c trU'ngrieng
bi~t. GA du(,1cdung .de Hm ra nhilng tham s6 t6i u'u cho vi~c ke't h(,1p
cac m~ng. Quh the ban dh vdi 100 ca the, m6i ca the chl1'a840 bit
(3x35x8). Nhilng tham s6 tie'n hoa dU'(,1cdung trong thit nghi~m nay
18
nhu' sau: xde sudt lai ghep t{li mQt dilm la 0.6 (60%) vii cae xae su{;'t
dQt bitn bang 0.01(1 %). Gid tr; tMeh nghi du'~c gall cho mQt chu6i
b~ng vi~c ki6m tra tY l~ nMn d{lng vOi cae m~u chfi' dii hu1i'nIuy~n.
Chu trlnh xu Iy ti€n Ma ditng Il,Iikhi gia trl thich nghi to't nha't cua
qu~n th6 khong du'(jccai ti€n hdn nii'a trong cae vong I~p tie'p theo.
Cac ke't qua so sanh ty I~ nh~n dl,lngteen bQ dii' Ii~u ki6m tea khi
su d\mg cac m{lngNuron rieng bi~t: NNl, NN2, NN3, NNal1:hulln

luy~n vOi t1i'tca ba bQvee td d~e tru'ng; cac phlicJngphdp ktt h{fp ba
m{lng NN truyen th6ng: phlicJngphdp trung blnh, phu'dng phap Mm
Borda (dlfa viio ky thu~t tuy6n chQn: xe'p h~lng) va mo hlnlt de xu{;'t:
GA lien ktt 3 m{lng NN. Nh~n xet: Bllt ct1 phu'dng pilar ke't h<;1pba
ml,lng Ndron nao ding dl,lthi~u qua cao hdn vi~c su dvng rieng bi~t
titng m{lng Naron. M~t khae, mo hlnh d~ xullt: GA lien kIt 3 m{lng
NN Il,Iitho du'~c hi~u qua eao hdn so vOi vi~c su dvng cac phu'dng
phap k€t h~p khad (93.29%).
Hdn nii'a, phu'dng phap d~ fight cling du'~e so sanh vOi mQt so'ke't
qua cua mQt vai phu'dng phap truy~n th6ng va mdi nhllt. Nh~n thlly:
hi~u qua eua mo hlnh d€ xudt Iii dang quaD tam va co th6 so sanh no
vdi nhfi'ng phu'dng phap nh~n d~lngchfi'vie't lay t6t nhllt hi~n hanh.
Chu'dng 3
Klh HQPBA KY THU';' T: THU';' T GIAI DI TRUYEN, MANG
NaRON v A.LOGIC MC1
3.1 MQt s6ky thu4t kit hr,fpDi truyill- Ndron- Mil
3.1.1 M~ng Kohonen d'n djnh trj s6 thich nghi IDa cho ThuQt gidi
di truyin
Djnh nghia 3.1 (vee ta d{ie trling)
M~u F du'~cdinh nghia Iii mQt vee ta d{ie trling co L phh tu:
F=(jl, 12, ,/L). Trong d6, fie (O,Max); gia tri Max tuy thuQc vao bai
loan cl,lth6; i=1 L.
Dinh nghia 3.2 (mdu trunK blnh)
Vec td d~c tru'ngbi6u di~n mdu trunK blnlt 0 dtt~c dinh nghia:
0=(01. O2., , OL).
Trong d6,
0 I = [ Im'o :1m lImlo = 0 va I max= Max ; i = 1 L.
(3.1)
19
Djnh nghia 3.3JmJu dQidi~n)

Bitt.n = U 11.; 11. ~ 0 ; 11 . (")11 . ~ 0 vui i ~ j.
i= 1 I I I J
Cbo tru'de mQt m~u: p'=(p'J, P'2,'", p'L)e 0,. Lue d6, pi du'cjegQi la
mdu d{li di~n eua khOng gian OJ.
Dinh nghia 3.4 (Khoaog cach rang buQc)
Cho tnidc 2 m§u A, B. Khoang each rang buQc giua A va B du'clc
dinh nghianhu'sau: -' £
d(A,B)=AB=IA-BI= 2:(al-b,)'
Dinh nghia 3.5 (G6c) 1.0
Cho tntdc 2 m§u A, B. G6e giua A va B du'QCdinh nghIa nhu'sau:
( )
-I (A- O)(B- 0) -I (A- O)(B- 0)
a A,B =LAOB =COS COS
ADx BO d(A,0) x d(B,0) (3.3)
(3.2)
M\le nay d~ xua't mQt ky thu~t a'n djnh tr! s6 Wch nghi mo: Xac
dinh muc dQ ddng df;lnggiua hai m§u (vec td) A va B ba't ky. Ba df;li
Iu'Qng: Khoang caeh(d), Goc(a) va L'n tf;losinh thu(g) la cd sfl d~
danh gia mue dQ ddng df;lngnay. Trong do, u'u tieD s6 1 la Khoang
each(d): phan anh stf sai kMc v~ gia tr! giua cae ph'n tit cua hai vec
td A va B. Uu lien s6 2 la G6c(a):phan anh dQ l~ch giua hai vec td
thOng qua m§u trung blnh O. Cu6i cung Ia L'n tf;losinh thu(g) d~
danh gia muc dQ t6i u'u cua Thu~t gicii. Ba df;lilu'clngla d'u vao de
xae dinh muc dQ ddng d1)ngcua hai m§u A va B teen nguyen t~c: (d)
va(a) dng nha thi A va B cang gi6ng nhau va (g) nM thi thu~t gicii
cang t6i u'u. .
A+B
He th6n~ mC!+ man~ Kobonen
r"""""""""""""""-""""'-"""";""""""-"'-"""""'""""""""'j ISm:
I

M
i Ldn(l.O)
I ang ,
I
d
K
.
h
! TB-Ldn(O.7)
.
L
.'
V( ) 0 ODeD I
! a U\ltmo. V V2, ,V27 ;~TB(OA)
I . 'v'VIE[O,I] I TB- Nho(O.I)
i g i Nho(O.O2)
l J
20
3.1.2 (fog d\mg ThuQ-tgitUdi truyin(GA) voi ham thfch nghi mo
ddl/c in djnh trong m\lC3.1.1 di t:Jo ra qudn thi M mftu
- I
F,.,k =I,M ddng d:Jngvoi P Eill
Djnh nghia 3.6 (ngl/iJng tr; sd thEchnghi &)
Cho tntoe mau d<,\idi~n Peni (dinh nghla 3.3) va qu~n th6 N ca
th6 Fj. j = I, N
.Ngl/iJng tr; sd thEch nghi &e[O.I] la ngu'ong qui dinh
dn thie't d6 daub gia mue dQ d6ng d<,\nggiii'a Fj va mau d<,\idi~n pi
(mue dQFjeni).
Ne'u tr; .fd thEchnghi cua FJ>-&tIll ke't lu~n: Fjeni.
Ngu'<;1c I<,\ike't lu~n: F/~nl.

Dill blziloan
Cho tnfoe mau d<,\idi~n
P eni (dinh nghla 3.3) dn xac dinh M
mau Fko k =I,M d6ng d<,\ng voi P.Co nghla Ia tlm ra M mau Fk sac
eho Fk e 0.1; k = 1,M .
Tlmat gidi
T<,\omau d6ng d<,\ng(GA + FS + m<,\ng Kohonen)
pi r""~"~'~~;:~~"""""'~';~'~;~";:-"""""""""'~'~:"'I
I
ho~c sau SVL I
khong I
Tmin ttcdi truy~n
I
I
I (GA)
I " 1
pi + popF[Mj
3.1.3 Hi~u qua CUBroo blnh ktt hrfp Vi tmyin KohOlte11.Mll trong
xac djnh miu ddng d~ng
M~nh d~ 3.1
Cho tru'oc mdu d{li
di~n Peni (dinh nghia 3.3) va quh th6 khoi
t<,\og6m N ca th6 FI'j = I,N; Nnguyen7?l. Cho tnfoe ngl/iJng tr; .f/I
thlch nghi &(dinh nghia 3.6) va sd [I/<lngcac Mn t{lOsinh G. Ghi thie't
qu~n th6 chua cae ea th6 pIlau bi~t va bie't M s6 cua cae loan tti' di
truy~n. Llle nay, s61u'<;1ngm~u d6ng d~ng voi P;enl Iii M(G) du'<;1c
xac dinhthee cong thuc: G
M(G) = Lm(g) (3.4)
Trong do, m(g) Iii s6 1u'<;Ing;;;au d6ng d<,\ngvdi pi (TSTN 7?&)t<,\i
I~n t<,\osinh thu g.

21
B6 d~ 3.1
Ne'u M(G) =0 (Hnh theo m~nh de 3.1) thl ke't lu~n : thOng t6n t;.1i
. m~u d6ng d;.1ngvdi pi sau G l~n t;.10sinh eua ThUf)tgidi di truyln thao
- lac teen mien qu~n th~ khl1it;.10Fl' j = 1,N .
M~nh d~ 3.2
Cho trtfde mdu d(li di~n pieni (djnh nghla 3.4) va qu~n th6 kMi
t;.10g6m N ca th~ Fl' j = I,N . Cho trtfdengllilngtr;.rdthfchnghi EVa
s61tf<1ngt6i thi~u cae mau d6ng d;.1ngvdi pi E n; la (M). Gia thie't,
quh th~ ehua cae ea th~ rieng bi4\t va bie't h~ 56 eua cae loan tli'di
truy~n. .
Lue nay, s61h t;.10sinh G dtf<1Kexae djnh:
G =K ntu Lm(g)? M
1=1
Trong do, m(g) 13s61tf<1ngcae m~u d6ng d;.1ngvdipi t;.1il~n thu g.
B6 d~ 3.2 K
Ne'u thong t6n t;.1igia trj K nguyen dtfdng d~ Lm(g) ~ M(tinh theo
m~nh de 3.2) thl.rd Lant(lO.rinhG thOng de djnlC'
H~ qua 3.1 G
Ne'u tfln t;.1iG l~n t;.10sinh sao eho Lm(g) ~ M (m4\nh de 3.2) thl
ehiic chiinse co t6i thi~u M m~u d6ng d~~g vdi pi eho trude (t6i thi6u
M m~u Fko k = I,M en;).
3.1.4 BQ nM ke't hQ'pph\lc h~i maD ma't mat th6ng tin
Djnh nghia 3.7 (nulu mat mat thOng tin)
Mdu ma't nuN thong tin Xmmllla mQt vee td d~e trtfng co L phh tli'
vdi nhii'ng phh tli'bj thie'u hvt dtf<1equy v~ gia trj D:
ThOngtinbL ~
X/lIltllt=(Xlo X2, , D, D, D, D,. . . . D, D, D, D, Xi).
(3.5)
D~t bai tOiln

Cho trtfdemdu a(lidi~npieni, bie't:
n
Q= U Q.;Q.;t:0;Q.()Q.;t:0vai ;;t:j.
;=1 t t t J
Cho m~u milt mat thong tin Xmmtt(Bjnh nghla 3.7). Bie't Xph~c-,,&;eQ.
ch xae djnh Xph~c_h&itit Xmmttva thOng gian m~u Q.
22
Cach ghH quy€t
(1) Xae dinh 0 ttt mau d{li dien pi:
Tir pi en; xae dinh dtic;1eM m~u h k = 1,M d6ng d1,lngvoi p;
M + I k M .
(mve 3.1.2). E>~t: U T
= U Fk U pI
k=l k=I
.n. =
{T
k =
(
'T'k
T
k
)}
(M+I)Xn
:::):!ol: .£1 , , L k=1
(2) Sau khi co b() mau hudn [uyen o. Sri d{lng B() nM kgt IU/p
(Associative Memory- AM) ph{le h6i mau mat mdt thOng tin
3.1.5 GA lien ke't cae lm;l1Igmu: ung dQng cho pMn lo\li mfiu
PIll/dug pluip kef II(/pnhi!u ",(lllg Ndroll mu(FNN).
C6 hai phtidng phap t6ng quat eho vi~e ke't h<;1pcua cae m{lng
Naron: cach thu nha't dl/a vao ky thugt h{1pl1hilt,con cach thu hai d{ta

vao ky thugt tuy/!n;eh(Jn. Mvc nay d~ c~p den PIll/dug pluip d{/a vao
kj thul;t h(fp nMI. .
Cho trtioc m~u X ={Xl = (X.k, X: "",X~IXNJXk eO, k = {I, ,n}}
M
(chtiabie'tthuQclop nao) va khong giancae lOp0 =Uo" 0; *0,
0;" nj =0 , i * j. 1=1
E>6phan lOp m~u X v~ khong gian 0;, i = I, M eho trude, d~u lien
phai phan lop cac tr1,lngthai xt, k = 1,n v~ mQt trong M lop ban d~u.
S\t dvng n m1,lngmo cho m~u X, m1,lngmo k se dung cho tr1,lngthai xt,
n6 danh gia gia tri xac sua't dung d6 Xk e OJ' k = 1,n; i = 1,M nhti
san:
l{(~ IXk)=y,~], l~k~n, I~i~M. (3.6)
Trong do, YikI3].I~ i~ M, I~ k~ n, chinh Ia d~u ra cua thg thu 3
trong m{lng Naron mif (FNN) thu k (ehtidng 2- mve 2.2.2). Nhti v~y,
khOng dn th\fc hi~n t~ng thu 4, cac ke't qua cua thg thu 3 se la d~u
vao d6 th\fc hi~n ky thu~t ke't h<;1p.
Lue nay, sd d6 ke't h<;1pbao g6m n m1,lng,m6i m1,lngk se danh gia
gicilei xac sua't dung Pk(OJ IXk}k
= I,n; i = I,M.
Quay Ira [{Iim{le 2.3: Thugt gidi di truyin xde dinh he sa tin et;1y
clIo cdc dilu ra eila tung 11I{lngNaron se dttQc ap dvng cho cac mr,ll/g
Naron mo.
23

×