Đề số 92
Câu1: (2,5 điểm)
1) Cho hàm số: y =
1
1
2
−
+−
x
xx
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho.
b) Xác định điểm A(x
1
; y
1
) với x
1
> 1 thuộc đồ thị của hàm số trên sao cho
khoảng cách từ A đến giao điểm của 2 tiệm cận của đồ thị là nhỏ nhất.
2) Tìm tập giá trị của hàm số: y =
1
3
2
+
+
x
x
và các tiệm cận của đồ thị
của hàm số đã cho.
Câu2: (2 điểm)
1) Tìm tất cả các giá trị của tham số a để bất phương trình:
a.9
x
+ (a - 1)3
x + 2
+ a - 1 > 0 nghiệm đúng với ∀x
2) Giải và biện luận phương trình:
0
2
=++
alogalogalog
xa
axx
a là
tham số
Câu3: (2 điểm)
1) Cho biểu thức P = cosA + cosB + cosC, trong đó A, B, C là ba góc
của một tam giác bất kỳ. Chứng minh P đạt giá trị lớn nhất nhưng không đạt
giá trị nhỏ nhất.
2) Chứng minh bất đẳng thức:
21
1
1
0
lndx
xsin.x
xsin.x
−≤
+
∫
Câu4: (2 điểm)
Cho hình chóp S.ABC đỉnh S, đáy là tam giác cân, AB = AC = 3a, BC
= 2a. Biết rằng các mặt bên (SAB), (SBC), (SCA) đều hợp với mặt phẳng đáy
(ABC) một góc 60
0
Kẻ đường cao SH của hình chóp.
1) Chứng minh rằng H là tâm vòng tròn nội tiếp ∆ABC và SA ⊥ BC.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
2) Tính thể tích của hình chóp.
Câu5: (1,5 điểm)
1) Tính thể tích khối tròn xoay được tạo thành do quay xung quanh trục
Oy hình phẳng giới hạn bởi đường tròn (x - a)
2
+ y
2
= b
2
với 0 < b < a.
2) Tính tổng của tất cả các số tự nhiên gồm 5 chữ số khác nhau đôi một
được thành lập từ 6 chữ số 1, 3, 4, 5, 7, 8.
1
2
3
4
5
6
7