BÀI 6. ĐỐI XỨNG TRỤC
Bài 1: Hãy chọn câu sai.
A. Hai đoạn thẳng EB và E’B’ đối xứng nhau qua m.
B. Hai đoạn thẳng DB và D’B’ đối xứng nhau qua m.
C. Hai tam giác DEB và D’E’B’ đối xứng nhau qua m
D. Hai đoạn thẳng DE và D’B’ đối xứng nhau qua m.
Lời giải
Từ hình vẽ ta có A và A’ đối xứng nhau qua đường thẳng m; B và B’ đối xứng nhau qua
đường thẳng m; C và C’ đối xứng nhau qua đường thẳng m.
Suy ra hai đoạn thẳng EB và E’B’ đối xứng nhau qua m.
Hai đoạn thẳng DB và D’B’ đối xứng nhau qua m.
Hai tam giác DEB và D’E’B’ đối xứng nhau qua m.
Hai đoạn thẳng DE và D’E’ đối xứng nhau qua m nên D sai.
Đáp án cần chọn là: D
Bài 2: Hãy chọn câu đúng. Trục đối xứng của hình thang cân là:
A. Đường thẳng đi qua trung điểm hai cạnh bên của hình thang cân
B. Đường chéo của hình thang cân
C. Đường thẳng vng góc với hai đáy của hình thang cân
D. Đường thẳng đi qua trung điểm hai đáy của hình thang cân
Lời giải
Đường thẳng đi qua trung điểm hai đáy của hình thang cân là trục đối xứng của hình
thang cân đó.
Đáp án cần chọn là: D
Bài 3: Cho ΔABC và ΔA’B’C’ đối xứng nhau qua đường thẳng d biết AB = 8cm, BC =
11cm và chu vi của tam giác ABC = 30 cm. Khi đó độ dài cạnh C’A’ của tam giác
A’B’C’ là:
A. 16cm
B. 15cm
C. 8cm
D. 11cm
Lời giải
+ Xét tam giác ABC có chu vi PABC = AB + AC + BC => PABC = 11cm.
+ Vì tam giác ABC và tam giác A’B’C’ đối xứng nhau qua đường thẳng d nên AC =
A’C’ = 11cm
Đáp án cần chọn là: D
Bài 4: Hãy chọn câu đúng?
A. Tam giác đều có ba trục đối xứng
B. Tam giác cân có hai trục đối xứng
C. Hình tam giác có ba trục đối xứng
D. Hình thang cân có hai trục đối xứng
Lời giải
+ Hình thang cân có trục đối xứng là đường thẳng đi qua trung điểm hai đáy nên hình
thang cân có một trục đối xứng. Do đó A sai.
+ Tam giác cân có một trục đối xứng là đường trung trực hạ từ đỉnh cân nên B sai.
+ Tam giác thường thì khơng có trục đối xứng nên C sai.
+ Tam giác đều có ba trục đối xứng là ba đường trung trực của tam giác nên D đúng.
Đáp án cần chọn là: A
Bài 5: Cho hình vng ABCD cạnh bằng a. M và N là hai điểm lưu động lần lượt trên
̂ = 450. Vẽ tia Cx vuông góc với CN, Cx cắt đường thẳng
cạnh AB và AD sao cho MCN
AB tại E.
1. Chọn kết luận đúng nhất.
A. E là điểm đối xứng của N qua CM
B. Tam giác CEN là tam giác cân tại C
C. Cả A, B đều đúng
D. Cả A, B đều sai
Lời giải
̂ = 450 nên MCE
̂ = 450 hay C
̂2 + C
̂3 = 450
Ta có CN ⊥ CE (gt) mà MCN
̂1 + C
̂3 = 450 (vì MCN
̂ = 450) nên C
̂1 = C
̂2
Mà C
Xét tam giác CDN và tam giác CBE có:
BC = DC (do ABCD là hình vng);
̂=B
̂ = 900;
D
̂1 = C
̂2 (cmt)
C
Suy ra ΔCDN = ΔCBE (g.c.g)
Suy ra CN = CE
Xét tam giác CEN có CN = CE (cmt) nên tam giác CEN là tam giác cân tại C
Suy ra phân giác CM đồng thời là đường trung trực của NE.
Vậy E là điểm đối xứng của N qua CM
Đáp án cần chọn là: C
2. Tính chu vi của tam giác AMN theo a.
A. 4a
B. 3a
C. a
D. 2a
Lời giải
Ta có: ΔCMN = ΔCME (do tính đối xứng qua CM)
Nên MN = ME
Suy ra chu vi tam giác AMN là:
AM + AN + MN = AM + AN + ME
= AM + AN + MB + BE = AM + AN + MB + ND (vì ΔCDN = ΔCBE (theo câu trước)
nên BE = ND)
= (AM + MB) + (AN + ND)
Vậy chu vi tam giác AMN bằng 2a.
Đáp án cần chọn là: D
Bài 6: Cho tam giác ABC cân tại B, các đường trung tuyến AA’, BB’, CC’. Trục đối
xứng của tam giác ABC là:
A. AA’
B. BB’
C. AA’ và CC’
D. CC’
Lời giải
Do tam giác ABC cân tại B, nên đường trung tuyến BB’ đồng thời là đường trung trực.
Do đó BB’ là trục đối xứng của tam giác ABC.
Đáp án cần chọn là: B
Bài 7: Cho hình vẽ. Hãy chọn câu đúng:
A. Điểm đối xứng với A qua đường thẳng d là A.
B. Điểm đối xứng với K qua đường thẳng d là K
C. Điểm đối xứng với A qua đường thẳng d là K
D. Điểm đối xứng với Q qua đường thẳng d là Q.
Lời giải
Từ hình vẽ ta có đường thẳng d là đường trung trực của đoạn thẳng AK nên điểm đối
xứng với A qua đường thẳng d là K.
Đáp án cần chọn là: C
Bài 8: Cho tam giác ABC cân tại A, các đường trung tuyến AA’, BB’, CC’. Trục đối
xứng của tam giác ABC là:
A. AA’
B. BB’
C. AA’ và CC’
D. CC’
Lời giải
Do tam giác ABC cân tại A, nên đường trung tuyến AA’ đồng thời là đường trung trực.
Do đó AA’ là trục đối xứng của tam giác ABC.
Đáp án cần chọn là: A
Bài 9: Cho tam giác ABC, trong đó AB = 11cm, AC = 15cm. Vẽ hình đối xứng với tam
giác ABC qua trục là cạnh BC. Chu vi của tứ giác tạo thành là:
A. 52cm
Lời giải
B. 54cm
C. 26cm
D. 51cm
Gọi A’ là điểm đối xứng với A qua BC. Khi đó tam giác A’BC đối xứng với tam giác
ABC qua BC.
Tứ giác tạo thành là ABCA’.
Ta có A’B = AB = 11cm (vì A’B và AB đối xứng nhau qua BC)
A’C = AC = 15cm (vì A’C và AC đối xứng nhau qua BC)
Chu vi tứ giác ABCA’ là
P = AB + AC + A’B + A’C = 11 + 15 + 11 + 15 = 52 cm
Đáp án cần chọn là: A
Bài 10: Hãy chọn câu đúng.
A. Hình thang cân có trục đối xứng là đường trung trực của hai đáy
B. Tam giác có trục đối xứng là đường trung tuyến
C. Tam giác có trục đối xứng là đường cao
D. Hình thang vng có đối xứng là đường trung bình của nó
Lời giải
Đường thẳng đi qua trung điểm hai đáy của hình thang cân là trục đối xứng của hình
thang cân đó.
Như vậy hình thang cân có trục đối xứng là đường trung trực của hai đáy.
Đáp án cần chọn là: A
Bài 11: Cho đoạn thẳng AB có độ dài 3cm và đường thẳng d. Đoạn thẳng A’B’ đối xứng
với AB qua d. Độ dài đoạn thẳng A’B’ là:
A. 3cm
B. 6cm
D. 9cm
D. 12cm
Lời giải
Vì đoạn thẳng A’B’ đối xứng với AB qua d nên A’B’ = AB = 3cm.
Đáp án cần chọn là: A
Bài 12: Hãy chọn câu sai:
A. Nếu hai góc đối xứng nhau qua một đường thẳng thì chúng bằng nhau
B. Nếu hai tam giác đối xứng nhau qua một đường thẳng thì chúng bằng nhau
C. Nếu hai tam giác đối xứng nhau qua một đường thẳng thì chu vi của chúng bằng nhau.
D. Nếu hai tia đối xứng với nhau qua một đường thẳng thì chúng bằng nhau.
Lời giải
Vì hai đoạn thẳng (góc, tam giác) đối xứng với nhau qua một đường thẳng thì chúng bằng
nhau nên D sai.
Đáp án cần chọn là: D
Bài 13: Cho đoạn thẳng AB có độ dài 6cm và đường thẳng d. Đoạn thẳng A’B’ đối xứng
với AB qua d. Độ dài đoạn thẳng A’B’ là:
A. 3cm
B. 6cm
D. 9cm
D. 12cm
Lời giải
Vì đoạn thẳng A’B’ đối xứng với AB qua d nên A’B’ = AB = 6cm.
Đáp án cần chọn là: B
Bài 14: Trên tia phân giác góc ngồi tại đỉnh C của tam giác ABC, lấy điểm M (M khác
C). Chọn câu đúng.
A. MA + MB = AC + BC
B. MA + MB > AC + BC
C. MA + MB < AC + BC
D. Chưa đủ điều kiện để so sánh
Lời giải
Trên tia đối của tia CB lấy điểm A’ sao cho CA = CA’
Khi đó ta có: ΔCAA’ cân tại A có CM là phân giác góc ACA’ nên CM cũng là đường
trung trực của AA’.
Từ đó ta có: MA = MA’
Nên MA + MB = MA’ + MB
Xét tam giác MA’B có MA’ +MB > A’B MA + MB > A’C + BC
Hay MA + MB > AC + BC (vì CA = CA’)
Đáp án cần chọn là: B
Bài 15: Cho hình vẽ. Hãy chọn câu sai.
A. Điểm đói xứng với P qua đường thẳng QG là P’.
B. Điểm đối xứng với B qua đường thẳng QG là B’.
C. Điểm đối xứng với D qua đường thẳng QG là G.
D. Điểm đối xứng với G qua đường thẳng QG là G
Lời giải
Từ hình vẽ ta có đường thẳng QG là đường trung trực của đoạn thẳng DD’, BB’, PP’ nên
Điểm đối xứng với P qua đường thẳng QG là P’ nên B đúng.
ĐIểm đối xứng với B qua đường thẳng QG là B’ nên B đúng.
Điểm đối xứng với D qua đường thẳng QG là D’ nên C sai.
Vì G Є QG nên điểm đối xứng với G qua QG là G nên D đúng.
Đáp án cần chọn là: C
Bài 16: Cho hình vẽ, AD = AE, AG là trung trực của DE. Có bao nhiêu cặp đoạn thẳng
đối xứng nhau qua trục AG (các đoạn thẳng thuộc đường thẳng AD, AE)? Chọn câu
đúng.
A. 1
B. 2
C. 3
D. 4
Lời giải
Từ giả thiết ta thấy ΔADE cân tại A có AG là đường cao nên AG cũng là đường trung
trực của DE.
Nên điểm D và E đối xứng nhau qua AG.
Lại có BC // DE (cùng vuông với AG) nên suy ra
AB
AD
AC
(định lý Ta-lét)
AE
Mà AD = AE (gt) => AB = AC
Do đó ΔABC cân tại A có AF là đường cao nên AF cũng là đường trung trực của BC.
Từ đó điểm B, C đối xứng nhau qua AG.
Như vậy:
+ Hai đoạn thẳng BD, CE đối xứng nhau qua AG.
+ Hai đoạn thẳng AB, AC đối xứng nhau qua AG
+ Hai đoạn thẳng AD, AE đối xứng nhau qua AG
Đáp án cần chọn là: C
Bài 17: Cho ΔABC và ΔA’B’C’ đối xứng nhau qua đường thẳng d biết AB = 4cm, BC =
7cm và chu vi của tam giác ABC = 17cm. Khi đó độ dài cạnh C’A’ của tam giác A’B’C’
là:
A. 17cm
Lời giải
B. 6cm
C. 7cm
D. 4cm
+ Xét tam giác ABC có chu vi PABC = AB + AC + BC => PABC = 6cm.
+ Vì tam giác ABC và tam giác A’B’C’ đối xứng nhau qua đường thẳng d nên AC =
A’C’ = 6cm
Đáp án cần chọn là: B
Bài 18: Cho tam giác ABC, trong đó AB = 8cm, AC = 10cm. Vẽ hình đối xứng với tam
giác ABC qua trục là cạnh BC. Chu vi của tứ giác tạo thành là:
A. 38cm
B. 54cm
C. 36cm
D. 18cm
Lời giải
Gọi A’ là điểm đối xứng với A qua BC. Khi đó tam giác A’BC đối xứng với tam giác
ABC qua BC.
Tứ giác tạo thành là ABCA’.
Ta có A’B = AB = 8cm (vì A’B và AB đối xứng nhau qua BC)
A’C = AC = 10cm (vì A’C và AC đối xứng nhau qua BC)
Chu vi tứ giác ABCA’ là
P = AB + AC + A’B + A’C = 8 + 10 + 8 + 10 = 36 cm
Đáp án cần chọn là: C
Bài 19: Cho hai điểm A, B nằm trên cùng một nửa mặt phẳng bờ là đường thẳng d. Gọi
B’ là điểm đối xứng của B qua đường thẳng d. Tìm trên đường thẳng d điểm M sao cho
tổng MA + MB nhỏ nhất. Chọn khẳng định đúng nhất.
A. M là giao điểm của đoạn thẳng AB và đoạn thẳng d.
B. M là giao điểm của đoạn AB’ và đường thẳng d.
C. Cả A, B đều đúng.
D. Cả A, B đều sai.
Lời giải
Gọi B’ là điểm đối xứng của B qua đường thẳng d. B’ cố định.
Ta có: MB = MB’ (tính chất đối xứng trục).
Xét ba điểm M, A, B’ ta có MA + MB’ ≥ AB’
Do đó MA + MB ≥ AB’
Dấu “=” xảy ra khi và chỉ khi A, M, B thẳng hang theo thứ tự đó hay M là giao điểm của
đoạn AB’ và đường thẳng d.
Vậy khi M ≡ M’ là giao điểm của đoạn thẳng AB’ và đường thẳng d thì tổng MA + MB
nhỏ nhất, trong đó B’ là điểm đối xứng của B qua d.
Đáp án cần chọn là: B
̂ = 200; B
̂ = 800, d là trung trực của cạnh AB. Trên cạnh
Bài 20: Cho tam giác ABC có A
AC, lấy điểm M sao cho AM = BC và gọi M’ là điểm đối xứng của M qua d.
1. Tam giác M’BC là tam giác gì? Chọn đáp án đúng nhất.
A. đều
B. cân tại B
C. cân tại C
D. vuông cân tại M’
Lời giải
Do tính chất đối xứng qua d, ta có AM = BM’
Mà AM = BC (gt) nên BM’ = BC
̂ = MAB
̂ (do MA đối xứng với M’B qua d)
Ta lại có: M′BA
̂ =B
̂ – 200 = 800 – 200 = 600
Suy ra M′BC
̂ = 600 do đó tam giác M’BC là tam giác đều
Xét tam giác M’BC có BM’ = BC, M′BC
Đáp án cần chọn là: A
2. Tính góc BMC.
A. 450
Lời giải
B. 300
C. 600
D. 400
̂ = 1800 – (A
̂+B
̂) = 1800 – (200 + 800)
Ta cũng có: MCB
̂ = MCB
̂
Suy ra MCM′
̂ =A
̂ = 200 (góc đồng vị)
Mà CMM′
̂ = CMM′
̂ suy ra M’C = M’M = M’B
Nên MCM′
̂ = M′BM
̂ (tam giác M’MB cân tại đỉnh M’); M′MB
̂ = MBA
̂ (so le trong)
Ta lại có: M′MB
̂ = MBA
̂
Nên M′BM
̂ + M′MB
̂
̂ = CMM′
Vậy BMC
Đáp án cần chọn là: B