Tải bản đầy đủ (.pdf) (97 trang)

Leçons sur l''''intégration des Équations Différentielles aux Dérivées Partielles, by Vito Volterra ppt

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.03 MB, 97 trang )


x y θ =
arc tg
y
x
θ
N
xy
M
0
M
1
x
y
O
θ
x M
0
x
M
0
NM

M


1
θ
θ
1
M
1

∂θ
∂x
= −
y
x
2
+ y
2
∂θ
∂y
=
x
x
2
+ y
2
S
∂θ
∂x
∂θ
∂y
x
y

O
S X Y
Z

S

∂X
∂x
+
∂Y
∂y
+
∂Z
∂z

dS
=

σ
(X cos nx + Y cos ny + Z cos nz) dσ
σ S n σ
S
σ S X Y Z

σ

∂Z
∂y

∂Y

∂z

cos nx +

∂X
∂z

∂Z
∂x

cos ny +

∂Y
∂x

∂X
∂y

cos nz


= ±

S
(X dx + Y dy + Z dz)
n σ s
+
u v w
γ
11

=
∂u
∂x
γ
22
=
∂v
∂y
γ
33
=
∂w
∂z
γ
32
= γ
23
=
∂v
∂z
+
∂w
∂y
, γ
13
= γ
31
=
∂w
∂x

+
∂u
∂z
, γ
21
= γ
12
=
∂u
∂y
+
∂v
∂x
.
dS
F (γ
11
, γ
22
, γ
33
, γ
23
, γ
31
, γ
12
) dS
F γ
11

γ
22
γ
33
γ
23
γ
31
γ
12
γ
rs
t
11
=
∂F
∂γ
11
, t
22
=
∂F
∂γ
22
, t
33
=
∂F
∂γ
33

,
t
32
= t
23
=
∂F
∂γ
32
, t
13
= t
31
=
∂F
∂γ
31
, t
21
= t
12
=
∂F
∂γ
12
,

T
x
= t

11
cos nx + t
12
cos ny + t
13
cos nz
T
y
= t
21
cos nx + t
22
cos ny + t
23
cos nz
T
z
= t
31
cos nx + t
32
cos ny + t
33
cos nz
n dσ
X Y Z
dS T
x
T
y

T
z
(1)















X =
∂t
11
∂x
+
∂t
12
∂y
+
∂t
13
∂z

Y =
∂t
21
∂x
+
∂t
22
∂y
+
∂t
23
∂z
Z =
∂t
31
∂x
+
∂t
32
∂y
+
∂t
33
∂z
(2)






T
x
= t
11
cos nx + t
12
cos ny + t
13
cos nz
T
y
= t
21
cos nx + t
22
cos ny + t
23
cos nz
T
z
= t
31
cos nx + t
32
cos ny + t
33
cos nz
n
F =
1

2

2
+ Kψ,
θ = γ
11
+ γ
22
+ γ
33
, ψ = γ
2
11
+ γ
2
22
+ γ
2
33
+
1
2

2
23
+ γ
2
31
+ γ
2

12
);
t
11
= Lθ + 2Kγ
11
t
22
= Lθ + 2Kγ
22
t
33
= Lθ + 2Kγ
33
t
23
= Kγ
23
t
31
= Kγ
31
t
12
= Kγ
12
.
L K θ
(1)
1

















X = K∆
2
u + (L + K)
∂θ
∂x
Y = K∆
2
v + (L + K)
∂θ
∂y
Z = K∆
2
w + (L + K)
∂θ

∂z

2

2
∂x
2
+

2
∂y
2
+

2
∂z
2
.
A

B

A
B
AA

BB

AA


BB

(1) (2) X = Y = Z = T
x
= T
y
= T
z
= 0
(1) u v w

S
F dS = 0,
S
γ
11
= γ
22
= γ
33
= γ
23
= γ
31
= γ
12
= 0
u v w
A


B

A
B
A

B

A
B
M
0
M
1
AA

BB

M
0
AA

M
1
γ
11
, γ
22
, γ
33

, γ
23
, γ
31
, γ
12
u v w
γ
rs
s A
0
A
1
γ
(0)
rs
γ
(1)
rs
γ
rs
A
0
A
1
x
0
y
0
z

0
A
0
x
1
y
1
z
1
A
1
u v w A
1
u
1
= u
0
+
1
2

(0)
21
+ r
0
)(y
1
− y
0
) +

1
2

(0)
31
− q
0
)(z
1
− z
0
)
+

s

γ
11
+ (y
1
− y)
∂γ
11
∂y
+ (z
1
− z)
∂γ
11
∂z


dx
ds
+

(y
1
− y)

∂γ
12
∂y

∂γ
22
∂x

+

z
1
− z
2

∂γ
21
∂z
+
∂γ
31

∂y

∂γ
23
∂x

dy
ds
+

y
1
− y
2

∂γ
21
∂z
+
∂γ
31
∂y

∂γ
23
∂x

+ (z
1
− z)


∂γ
13
∂z

∂γ
33
∂x

dz
ds

ds

v
1
= v
0
+
1
2

(0)
32
+ p
0
)(z
1
− z
0

) +
1
2

(0)
12
− r
0
)(x
1
− x
0
)
+

s

z
1
− z
2

∂γ
32
∂x
+
∂γ
12
∂z


∂γ
31
∂y

+ (x
1
− x)

∂γ
21
∂x

∂γ
11
∂y

dx
ds
+

γ
22
+ (z
1
− z)
∂γ
22
∂z
+ (x
1

− x)
∂γ
22
∂x

dy
ds
+

(z
1
− z)

∂γ
23
∂z

∂γ
33
∂y

+

x
1
− x
2

∂γ
32

∂x
+
∂γ
12
∂z

∂γ
31
∂y

dz
ds

ds

w
1
= w
0
+
1
2

(0)
13
+ q
0
)(x
1
− x

0
) +
1
2

(0)
23
− p
0
)(y
1
− y
0
)
+

s

(x
1
− x)

∂γ
31
∂x

∂γ
11
∂z


+

y
1
− y
2

∂γ
13
∂y
+
∂γ
23
∂x

∂γ
12
∂z

dx
ds
+

x
1
− x
2

∂γ
13

∂y
+
∂γ
23
∂x

∂γ
12
∂z

+ (y
1
− y)

∂γ
32
∂y

∂γ
22
∂z

dy
ds
+

γ
33
+ (x
1

− x)
∂γ
33
∂x
+ (y
1
− y)
∂γ
33
∂y

dz
ds

ds
u
0
v
0
w
0
u v w A
0
p
0
q
0
r
0
∂v

∂z

∂w
∂y
,
∂w
∂x

∂u
∂z
,
∂u
∂y

∂v
∂x
A
0
u
1
v
1
w
1
x
1
y
1
z
1

s
s σ

σ

y
1
− y
2
B −
z
1
− z
2
C

cos nx +

(z
1
− z)F +
y
1
− y
2
A

cos ny +

(y

1
− y)G +
z
1
− z
2
A

cos nz



σ

(z
1
− z)E +
x
1
− x
2
B

cos nx +

z
1
− z
2
C −

x
1
− x
2
A

cos ny +

(x
1
− x)G +
z
1
− z
2
B

cos nz



σ

(y
1
− y)E +
x
1
− x
2

C

cos nx +

(x
1
− x)F +
y
1
− y
2
C

cos ny +

x
1
− x
2
A −
y
1
− y
2
B

cos nz


n σ

A =

∂x

∂γ
31
∂y
+
∂γ
12
∂z

∂γ
23
∂x

− 2

2
γ
11
∂z∂y
B =

∂y

∂γ
12
∂z
+

∂γ
23
∂x

∂γ
31
∂y

− 2

2
γ
22
∂x∂z
C =

∂z

∂γ
23
∂x
+
∂γ
31
∂y

∂γ
12
∂z


− 2

2
γ
33
∂y∂x
E =

2
γ
32
∂y∂z


2
γ
22
∂z
2


2
γ
33
∂y
2
F =

2
γ

31
∂z∂x


2
γ
33
∂x
2


2
γ
11
∂z
2
G =

2
γ
12
∂x∂y


2
γ
11
∂y
2



2
γ
22
∂x
2
A = B = C = E = F = G = 0
 
u
1
= u
0
v
1
= v
0
w
1
= w
0
s
σ
 
u
α
v
α
w
α
u

β
v
β
w
β





u
β
− u
α
= l + ry − qz
v
β
− v
α
= m + pz − rx
w
β
− w
α
= n + qx −py
l m n p q r
 
σ xz z
σ
z

σ
l m n p q r

















u =
1


(l − qz + ry) arc tg
y
x
+
1
2


−m − pz −
rK
L + 2K
x

log(x
2
+ y
2
)

v =
1


(m − rx + pz) arc tg
y
x
+
1
2

l − qz −
rK
L + 2K
y

log(x
2
+ y

2
)

w =
1


(n − py + qx) arc tg
y
x
+
1
2
(px + qy) log(x
2
+ y
2
)

.
1

arc tg
y
x
l m n p q r
E = −

S
F dS = −

1
2

S
(t
11
γ
11
+ t
22
γ
22
+ t
33
γ
33
+ t
23
γ
23
+ t
31
γ
31
+ t
12
γ
12
) dS
S

u v w
S
σ
1
σ
2
. . . σ
n
E =
1
2
n

1

σ
i
{X
i
(u
(i)
α
− u
(i)
β
) + Y
i
(v
(i)
α

− v
(i)
β
) + Z
i
(w
(i)
α
− w
(i)
β
)}dσ
i
=
1
2
n

1

l
i

σ
i
X
i

i
+ m

i

σ
i
Y
i

i
+ n
i

σ
i
Z
i

i
+ p
i

σ
i
(Y
i
z −Z
i
y) dσ
i
+ q
i


σ
i
(Z
i
x − X
i
z) dσ
i
+ r
i

σ
i
(X
i
y − Y
i
x) dσ
i

u
(i)
α
v
(i)
α
w
(i)
α

u
(i)
β
v
(i)
β
w
(i)
β
σ
i
l
i
, m
i
, n
i
, p
i
, q
i
, r
i
σ
i
X
i
Y
i
Z

i
L
i
=

σ
i
X
i

i
M
i
=

σ
i
Y
i

i
N
i
=

σ
i
Z
i


i
P
i
=

σ
i
(Y
i
z −Z
i
y) dσ
i
Q
i
=

σ
i
(Z
i
x − X
i
z) dσ
i
R
i
=

σ

i
(X
i
y − Y
i
x) dσ
i
E =
1
2
n

i=1
(L
i
l
i
+ M
i
m
i
+ N
i
n
i
+ P
i
p
i
+ Q

i
q
i
+ R
i
r
i
).
σ
i
L
i
, M
i
, N
i
P
i
, Q
i
, R
i
s
1
s
2
. . . s
6n
l
i

, m
i
, n
i
E
1
, E
2
. . . E
6n
L
i
, M
i
, N
i
E =
1
2
6n

1
E
i
s
i
.
s
1
s

2
. . . s
6n
s
h
= 1
E
ih
E
i
s
1
s
2
. . . s
6n
E
i
=
6n

1
E
ih
s
h
E =
1
2
6n


i=1
6n

h=1
E
ih
s
i
s
h
.
E
ih
s

1
, s

2
, . . . s

6n
s

1
, s

2
. . . s


6n
γ

rs
γ

rs
γ
rs
F

F


S

∂F

∂γ

rs
γ

rs
dS =

S

∂F


∂γ

rs
γ

rs
dS
S
S
6n

1
E

i
s

i
=
6n

1
E

i
s

i
E


i
E

i
E
i
6n

i=1
6n

h=1
E
ih
s

i
s

h
=
6n

i=1
6n

h=1
E
ih

s

i
s

h
s

i
s

i
E
ih
= E
hi
.
E
ih
L
i
, M
i
, N
i
P
i
, Q
i
, R

i
σ
i
E
1
, E
2
. . . E
6n
s
1
, s
2
. . . , s
6n
s
h
= 1
h E
ih
i
h E
hh
i h
h i
E =
1
2
6


1
6

1
E
ih
s
i
s
h
s
1
= l, s
2
= m, s
3
= n, s
4
= p, s
5
= q, s
6
= r.
E
E =
1
2
{E
11
(s

2
1
+ s
2
2
) + E
33
s
2
3
+ E
44
(s
2
4
+ s
2
5
) + E
66
s
2
6
}.
E
ih
i h
AA

A


A
A

z
l, m, n, p, q, r
T
−T
T u

v

w

u − u

v − v

w − w

1 2 4
5
2, 3, 5, 6.
6 2
6
2
6
T
−T
2

2
5 3
2
A
B
C
D
AB
X
(ab)
1
X
(ab)
2
X
(ab)
3
X
(ab)
4
X
(ab)
5
X
(ab)
6
x
(a)
1
x

(a)
2
x
(a)
3
x
(a)
4
x
(a)
5
x
(a)
6
A
x
(b)
1
x
(b)
2
x
(b)
3
x
(b)
4
x
(b)
5

x
(b)
6
B
e
(ab)
1
e
(ab)
2
e
(ab)
3
e
(ab)
4
e
(ab)
5
e
(ab)
6
AB
x
(a)
r
− x
(b)
r
+ e

(ab)
r
=
6

1
H
ri
X
i
r = 1, 2, 3, 4, 5, 6
H
ri

×