Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn thpt toán 12 (140)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (113.26 KB, 6 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

x2 − 9
Câu 1. Tính lim
x→3 x − 3
A. +∞.

B. −3.

Câu 2. Giá trị của lim (3x2 − 2x + 1)
x→1
A. +∞.
B. 2.
2n + 1
Câu 3. Tìm giới hạn lim
n+1
A. 2.
B. 0.
2
1−n
bằng?
Câu 4. [1] Tính lim 2
2n + 1
1


1
A. .
B. − .
3
2
x+1
Câu 5. Tính lim
bằng
x→+∞ 4x + 3
1
1
B. .
A. .
4
3
Câu 6. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
1
C. lim = 0.
n
Câu 7. Dãy
!n số nào sau đây có giới
!n hạn là 0?
1
5
B.
.
A. − .
3
3


C. 6.

D. 3.

C. 1.

D. 3.

C. 3.

D. 1.

C. 0.

D.

C. 1.

D. 3.

1
.
2

1
= 0.
nk
D. lim qn = 0 (|q| > 1).


B. lim

!n
5
C.
.
3

!n
4
D.
.
e

Câu 8. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
x2 − 12x + 35
x→5
25 − 5x
2
C. −∞.
A. +∞.
B. − .
5
x+1
Câu 10. Tính lim
bằng

x→−∞ 6x − 2
1
1
1
A. .
B. .
C. .
2
3
6
x
Câu 11. [12211d] Số nghiệm của phương trình 12.3 + 3.15 x − 5 x = 20 là
A. 2.
B. 3.
C. 1.
Câu 9. Tính lim

D.

2
.
5

D. 1.
D. Vơ nghiệm.

Câu 12. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1

1
A. m ≥ .
B. m < .
C. m > .
D. m ≤ .
4
4
4
4

2
Câu 13. [1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. Vô số.
D. 63.
Trang 1/5 Mã đề 1


1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y


2 11 − 3
18 11 − 29
C. Pmin =
.
D. Pmin =

.
3
21

Câu 14. [12210d] Xét các số thực dương x, y thỏa mãn log3
Pmin của P = x√+ y.
9 11 + 19
A. Pmin =
.
9

B. Pmin


9 11 − 19
=
.
9

Câu 15. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.
Câu 16. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 3.


C. 1.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 4.

log 2x
Câu 17. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 2 log 2x
1 − 4 ln 2x
1
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.
3
3
x ln 10
x
2x ln 10

2x ln 10
log(mx)
Câu 18. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m ≤ 0.
D. m < 0 ∨ m = 4.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 19. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey − 1.
Câu 20. [12214d] Với giá trị nào của m thì phương trình
A. 2 < m ≤ 3.

B. 2 ≤ m ≤ 3.

1
3|x−2|

= m − 2 có nghiệm


C. 0 < m ≤ 1.

D. 0 ≤ m ≤ 1.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 21. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 4.
B. 2.
C. 5.
D. 3.
!
1
1
1
Câu 22. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 1.
B. 2.
C. .
D. 0.
2

Câu 23. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 + n + 1
A. un =
.
B.
u
=
.
n
n2
(n + 1)2
cos n + sin n
n2 + 1
A. 1.
B. 0.
5
Câu 25. Tính lim
n+3
A. 0.
B. 1.

C. un =

n2 − 2
.
5n − 3n2

D. un =


1 − 2n
.
5n + n2

Câu 24. Tính lim

C. −∞.

D. +∞.

C. 3.

D. 2.

Câu 26. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
C. lim un = c (Với un = c là hằng số).

1
B. lim √ = 0.
n
n
D. lim q = 1 với |q| > 1.
un
Câu 27. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. 0.

C. +∞.
D. 1.
Trang 2/5 Mã đề 1


7n2 − 2n3 + 1
Câu 28. Tính lim 3
3n + 2n2 + 1
7
2
B. 0.
C. .
A. - .
3
3
2n2 − 1
Câu 29. Tính lim 6
3n + n4
2
A. 1.
B. .
C. 0.
3
Câu 30. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

D. 1.

D. 2.

(I) lim nk = +∞ với k nguyên dương.

(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 1.

C. 3.

D. 0.

Câu 31. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



a b2 + c2
abc b2 + c2
b a2 + c2
c a2 + b2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2

a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
[ = 60◦ , S O
Câu 32. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S
√ BC) bằng

a 57
2a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
17
19
19

Câu 33. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng


a 38

3a 58
3a 38
3a
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 34. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. .
B. .
C.
.
D. a.
2
3
2
Câu 35. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O

đến (S AB)
√ bằng



a 6
.
B. a 3.
C. 2a 6.
D. a 6.
A.
2
0 0 0 0
0
Câu 36.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 6
a 3
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2

2
7
3
Câu 37. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng


a 2
a 2
A.
.
B.
.
C. a 2.
D. 2a 2.
2
4
d = 120◦ .
Câu 38. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B. 2a.
C.
.
D. 3a.
2
Trang 3/5 Mã đề 1



Câu 39. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
.
B. a 6.
.
D.
.
A.
C.
3
2
6
Câu 40. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
.
B. 2
.
D. √

.
A. √
.
C. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 41. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Chỉ có (I) đúng.

C. Cả hai đều đúng.

D. Chỉ có (II) đúng.

Câu 42. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.

B. (I) và (II).


C. (I) và (III).

D. (II) và (III).

Câu 43. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
C. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
D.
dx = log |u(x)| + C.
u(x)
Câu 44. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (II) sai.

C. Khơng có câu nào D. Câu (I) sai.
sai.

Câu 45. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.


C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. Cả ba đáp án trên.
Trang 4/5 Mã đề 1


Câu 46. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
D.
f (x)dx = f (x).
Câu 47. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Câu 48.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
( f (x) + g(x))dx =

A.
Z

C.

( f (x) − g(x))dx =

f (x)dx +

Z

g(x)dx.

B.

Z
f (x)dx −

Z
g(x)dx.

Câu 49. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) xác định trên K.

D.

f (x)g(x)dx =
f (x)dx g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.


B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) liên tục trên K.

Câu 50. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.

B

3. A

4.

B

5. A


6.

D

8.

D

7.

C

B

9.

D

11.

10.

C
D

12.

C

14.


C

15. A

16.

C

17. A

18.

13.

19.

B

B

20. A

21. A

22. A

23.

D


24.

B

29.

D

28. A
C

30. A

31. A
33.

B

26.

25. A
27.

D

32.
B
D


35.
37. A

C

34.

D

36.

D
C

38.

39.

D

40. A

41.

D

42.

43.


D

44.

C

46.

C

45.
47.
49.

C
B
D

1

B

48.

B

50.

B




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×