Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn thpt toán 12 (141)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (115 KB, 6 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Tính lim

x→+∞

x−2
x+3

2
B. − .
C. −3.
D. 1.
3
Câu 2. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim+ f (x) = lim− f (x) = +∞.
A. 2.

x→a

x→a

x→a



x→a

D. lim f (x) = f (a).

C. f (x) có giới hạn hữu hạn khi x → a.


4n2 + 1 − n + 2
Câu 3. Tính lim
bằng
2n − 3
3
A. 1.
B. .
2
1 − 2n
Câu 4. [1] Tính lim
bằng?
3n + 1
1
A. 1.
B. .
3
Câu 5. !Dãy số nào sau đây có giới !hạn là 0?
n
n
4
5
A.

.
B. − .
e
3

x→a

C. +∞.

2
.
3

2
D. − .
3

!n
5
C.
.
3

!n
1
D.
.
3

C. 1.


D. 3.

1
C. − .
4

D.

C.

2n + 1
Câu 6. Tìm giới hạn lim
n+1
A. 0.
B. 2.

x2 + 3x + 5
Câu 7. Tính giới hạn lim
x→−∞
4x − 1
A. 0.
B. 1.
x+1
Câu 8. Tính lim
bằng
x→−∞ 6x − 2
1
1
A. .

B. .
6
2
2
x − 5x + 6
Câu 9. Tính giới hạn lim
x→2
x−2
A. 5.
B. 1.
x2 − 9
Câu 10. Tính lim
x→3 x − 3
A. −3.
B. +∞.

D. 2.

C.

1
.
3

1
.
4

D. 1.


C. 0.

D. −1.

C. 3.

D. 6.

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e − 1.
B. xy = −e + 1.
C. xy0 = ey + 1.
D. xy0 = −ey − 1.
log 2x
Câu 12. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1
1 − 2 ln 2x
1 − 4 ln 2x
A. y0 =
.
B. y0 = 3

.
C. y0 = 3
.
D. y0 =
.
3
x
2x ln 10
x ln 10
2x3 ln 10

Câu 11. [3-12217d] Cho hàm số y = ln



Câu 13. [12215d] Tìm m để phương trình 4 x+
3
A. 0 < m ≤ .
B. m ≥ 0.
4

1−x2



− 3m + 4 = 0 có nghiệm
3
9
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .

4
4

− 4.2 x+

1−x2

Trang 1/5 Mã đề 1


Câu 14. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 2.
C. Vơ nghiệm.

D. 3.

Câu 15. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. 2020.
C. log2 2020.
D. log2 13.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m < 0 ∨ m = 4.
C. m < 0 ∨ m > 4.
D. m ≤ 0.
1 − xy

Câu 17. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 − 19
2 11 − 3
18 11 − 29
9 11 + 19
A. Pmin =
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
9
3
21
9
Câu 18. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 3).
C. (2; 4; 4).
D. (2; 4; 6).
1
Câu 19. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3

A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.

Câu 20. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
5
5
A.
;3 .
B. [3; 4).
C. 2; .
D. (1; 2).
2
2
Câu 16. [1226d] Tìm tham số thực m để phương trình

7n2 − 2n3 + 1
Câu 21. Tính lim 3
3n + 2n2 + 1
7
2
A. .
B. - .
3
3


C. 0.

D. 1.

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 1.
1
C. lim un = 0.
D. lim un = .
2
!
1
1
1
Câu 23. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. 2.
B. +∞.
C. .
D. .
2
2

Câu 24. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
v
n
!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 22. [3-1132d] Cho dãy số (un ) với un =

Câu 25. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
Trang 2/5 Mã đề 1


(III) lim qn = +∞ nếu |q| > 1.
A. 3.

B. 1.


Câu 26. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 2
A. un =
.
B.
u
=
.
n
5n + n2
5n − 3n2

C. 0.

D. 2.

n2 + n + 1
n2 − 3n
.
D.
u
=
.
n
(n + 1)2
n2
!
3n + 2

2
+ a − 4a = 0. Tổng các phần tử
Câu 27. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 4.
B. 3.
C. 2.
D. 5.
n−1
Câu 28. Tính lim 2
n +2
A. 3.
B. 0.
C. 1.
D. 2.
un
Câu 29. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. +∞.
C. 0.
D. 1.
!
1
1
1
+
+ ··· +
Câu 30. Tính lim

1.2 2.3
n(n + 1)
3
A. 0.
B. .
C. 2.
D. 1.
2
Câu 31. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
A. a 2.
.
C. a 3.
.
B.
D.
3
2

Câu 32. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng



3a 38
3a
3a 58
a 38
.
B.
.
C.
.
D.
.
A.
29
29
29
29
[ = 60◦ , S O
Câu 33. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ O đến (S BC) bằng

√ với mặt đáy và S O = a.

a 57
a 57
2a 57
.
B.
.

C. a 57.
D.
.
A.
19
17
19
Câu 34. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
A. 2
.
B. √
.
C. √
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
C. un =

d = 120◦ .
Câu 35. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC

Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 2a.
B. 4a.
C. 3a.
D.
.
2
[ = 60◦ , S O
Câu 36. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng


a 57
a 57
2a 57
B.
A. a 57.
.
C.
.
D.
.
17
19
19
3a
Câu 37. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
Trang 3/5 Mã đề 1



a 2
B.
.
3

a
A. .
4

C.

2a
.
3

D.

a
.
3

d = 30◦ , biết S BC là tam giác đều

Câu 38. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
16
13
26
9
Câu 39. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
1
ab
A. 2
.
C. √

.
D. √
.
.
B. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 40. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng


a 2
a 2
A.
.
B.
.
C. a 2.
D. 2a 2.
2
4
Câu 41. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì


f (x)dx = F(x) + C.

C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
f (x)dx = f (x).
D.
Câu 42.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
A.
dx = ln |x| + C, C là hằng số.
B.
dx = x + C, C là hằng số.
Z x
Z
xα+1
C.
0dx = C, C là hằng số.
D.
xα dx =
+ C, C là hằng số.
α+1
Câu 43.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) + g(x)]dx =


A.
Z
B.
Z
C.
Z
D.

f (x)dx +

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z

[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.

Câu 44.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.

Z


!0

f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. B.
f (x)dx = f (x).
Z
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.

Câu 45. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Trang 4/5 Mã đề 1


Các mệnh đề đúng là
A. (II) và (III).

B. Cả ba mệnh đề.

C. (I) và (III).


D. (I) và (II).

Câu 46. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (II) sai.

C. Câu (I) sai.

D. Khơng có câu nào
sai.

Câu 47. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
dx = log |u(x)| + C.
B.
u(x)
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 48. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên

A. Cả hai đều đúng.
B. Chỉ có (II) đúng.

C. Chỉ có (I) đúng.

Câu 49. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị nhỏ nhất trên K.

B. f (x) có giá trị lớn nhất trên K.
D. f (x) xác định trên K.

D. Cả hai đều sai.

Câu 50. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D


3. A
D

5.
7.

D

D
B
D

10.
C

12.
C

13.

14. A
D

15.

16.

B
D


18.

B

19.
21.

4.
8. A

11. A

17.

D

6.

C

9.

2.

D

20. A
22.


B

23. A

D

24. A
D

25.

26. A

27. A

28.

29.

C

B

30.

D

31.

D


32.

D

33.

D

34.

D

35.

D

36.

D

C

37.
39.

38.

B


B

40. A

41.

C

42.

D

43.

C

44.

D

46.

D

45.
47.

D
B


48.

49. A

50.

1

B
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×