Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn thpt toán 12 (143)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (112.46 KB, 6 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

x+1
bằng
x→+∞ 4x + 3
1
B. .
3

Câu 1. Tính lim
A.

1
.
4

C. 1.

Câu 2. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. 1 + 2 sin 2x.
C. −1 + sin x cos x.
2n + 1
Câu 3. Tính giới hạn lim


3n + 2
2
1
A. 0.
B. .
C. .
3
2
1 − n2
bằng?
Câu 4. [1] Tính lim 2
2n + 1
1
1
A. .
B. − .
2
2

D. 3.
D. −1 + 2 sin 2x.

D.

3
.
2

1
.

3

D. 0.

C. 9.

D. 0.

C.

Câu 5. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 5.

B. 7.

Câu 6. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Câu 7. Tính lim
A. +∞.

2n − 3
bằng
2n2 + 3n + 1
B. 1.


Câu 8. !Dãy số nào sau đây có giới
!n hạn là 0?
n
4
5
A.
.
B.
.
e
3

C. −∞.

D. 0.

!n
1
C.
.
3

!n
5
D. − .
3

Câu 9. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞


A. lim [ f (x) + g(x)] = a + b.
x→+∞

C. lim [ f (x)g(x)] = ab.
x→+∞

Câu 10. [1] Tính lim

1 − 2n
bằng?
3n + 1
2
B. − .
3

x→+∞

f (x) a
= .
x→+∞ g(x)
b
D. lim [ f (x) − g(x)] = a − b.
B. lim

x→+∞

1
2
.
D. .

3
3

Câu 11. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. Vô số.
D. 62.
log 2x
Câu 12. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1
1 − 2 log 2x
1 − 4 ln 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
D. y0 =
.
3
x ln 10
2x ln 10
x
2x3 ln 10

A. 1.

C.

Trang 1/5 Mã đề 1


Câu 13. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 4).
C. (2; 4; 3).
D. (1; 3; 2).
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 14. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e + 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
1
Câu 15. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.

B. 2.
C. 3.
D. 4.
1
Câu 16. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 < m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.
Câu 17. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. log2 13.
C. 13.
D. 2020.

Câu 18. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
"
!
5
5
;3 .
C. [3; 4).
D. 2; .
A. (1; 2).
B.
2
2





Câu 19. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
9
3
A. 0 < m ≤ .
B. 0 ≤ m ≤ .
C. 0 ≤ m ≤ .
D. m ≥ 0.
4
4
4
Câu 20. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≤ 3.
C. m < 3.
D. m ≥ 3.
2
2
2
1 + 2 + ··· + n
Câu 21. [3-1133d] Tính lim
n3
2
1
B. .
C. 0.

D. +∞.
A. .
3
3
1 + 2 + ··· + n
Câu 22. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 0.
B. Dãy số un khơng có giới hạn khi n → +∞.
1
D. lim un = 1.
C. lim un = .
2
2n2 − 1
Câu 23. Tính lim 6
3n + n4
2
A. 2.
B. 1.
C. .
D. 0.
3
5
Câu 24. Tính lim
n+3
A. 2.
B. 3.
C. 0.
D. 1.

2
3
7n − 2n + 1
Câu 25. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. .
C. 0.
D. 1.
3
3
Câu 26. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
2

2

(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
Trang 2/5 Mã đề 1


(III) lim qn = +∞ nếu |q| > 1.
A. 3.
Câu 27. Tính lim
A. +∞.

B. 2.
cos n + sin n

n2 + 1
B. 1.

C. 0.

C. −∞.

D. 1.

D. 0.

Câu 28. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
C. lim qn = 1 với |q| > 1.

1
B. lim √ = 0.
n
D. lim un = c (Với un = c là hằng số).
un
Câu 29. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. +∞.
C. 0.
D. −∞.
n−1
Câu 30. Tính lim 2

n +2
A. 2.
B. 3.
C. 0.
D. 1.
d = 30◦ , biết S BC là tam giác đều
Câu 31. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
9
16
26
13
Câu 32. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường

√ thẳng BD bằng



b a2 + c2
abc b2 + c2
a b2 + c2
c a2 + b2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 33. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
A. √
.
B. √
.

C. 2
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2

Câu 34. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 38
3a 58
a 38
3a
A.
.
B.
.
C.
.
D.
.
29
29

29
29
[ = 60◦ , S O
Câu 35. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S√BC) bằng


a 57
2a 57
a 57
A. a 57.
B.
.
C.
.
D.
.
17
19
19
Câu 36. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 3.
B. 2a 6.

C. a 6.
D.
.
2
Câu 37. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
A. a 2.
B. a 3.
C.
.
D.
.
2
3
Câu 38. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng




a 6
a 6
a 6
A. a 6.

B.
.
C.
.
D.
.
2
6
3
Trang 3/5 Mã đề 1


Câu 39. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. .
B. .
C. a.
D.
.
3
2
2
d = 120◦ .
Câu 40. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a

.
D. 2a.
A. 4a.
B. 3a.
C.
2
Câu 41. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Cả ba đáp án trên.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 42. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều đúng.

C. Chỉ có (II) đúng.

D. Cả hai đều sai.

Câu 43. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +

g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Chỉ có (II) đúng.

C. Cả hai câu trên đúng. D. Cả hai câu trên sai.

Câu 44.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
A.
dx = log |u(x)| + C.
u(x)
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 45.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

Z
Z
Z
Z
Z
Z
C.
f (x)g(x)dx =
f (x)dx g(x)dx.
D.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Câu 46.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.

f (x)dx = F(x) + C ⇒
!0
f (x)dx = f (x).

f (t)dt = F(t) + C. B.

Z
Z

D.


k f (x)dx = k

Z

f (x)dx, k là hằng số.
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.

Câu 47. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
Trang 4/5 Mã đề 1


(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.

B. 2.

C. 3.

D. 1.

Câu 48. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z

C.
f (x)dx = f (x).

f (x)dx = F(x) + C.

D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 49. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.

B. Câu (II) sai.

C. Khơng có câu nào D. Câu (III) sai.
sai.

Câu 50.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) − g(x)]dx =

A.
Z
B.
Z
C.
Z

D.

g(x)dx, với mọi f (x), g(x) liên tục trên R.

f (x)dx −
Z

Z

[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
2.

1. A
3.

4.


B
D

7.
9.

10.
D

14.

15. A

16. A

19.

B

18.

21. A
D

25. A
29.

D
B


D
C

D

22.

C

24.

C

26.

27.

B

20.

C

23.

C

12. A

13. A

17.

D

8.

B

11.

B

6.

C

5.

D

B

28.

C

30.

C
C


31.

D

32.

33.

D

34.

B

35.

C

36.

C

37.

C

38.

C


39.

C

40.

C

42.

C

41.

D

43.

C

44. A

45.

C

46.

47.


C

48. A

49.

C

50.

1

D
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×