Tải bản đầy đủ (.pdf) (6 trang)

Đề môn toán ôn tập thpt qg (47)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (113.68 KB, 6 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

x−3
bằng?
x→3 x + 3
A. 1.
B. −∞.
2
x −9
Câu 2. Tính lim
x→3 x − 3
A. +∞.
B. 3.
1 − 2n
bằng?
Câu 3. [1] Tính lim
3n + 1
2
A. − .
B. 1.
3
x+2
Câu 4. Tính lim
bằng?


x→2
x
A. 0.
B. 1.
Câu 1. [1] Tính lim

C. 0.

D. +∞.

C. 6.

D. −3.

C.

1
.
3

C. 2.

Câu 5. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.


4n2 + 1 − n + 2

bằng
Câu 6. Tính lim
2n − 3
3
A. 1.
B. 2.
C. .
2
2
x − 12x + 35
Câu 7. Tính lim
x→5
25 − 5x
2
2
B. −∞.
C. .
A. − .
5
5
4x + 1
Câu 8. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. 4.
C. 2.
x+1
Câu 9. Tính lim
bằng

x→−∞ 6x − 2
1
1
B. .
C. 1.
A. .
6
2

D.

2
.
3

D. 3.

D. +∞.

D. +∞.

D. −1.

D.

1
.
3

Câu 10. Giá trị của lim (3x2 − 2x + 1)

x→1

C. +∞.
D. 1.
1
Câu 11. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 2 < m ≤ 3.
D. 0 ≤ m ≤ 1.
log(mx)
Câu 12. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0 ∨ m = 4.
C. m ≤ 0.
D. m < 0.
A. 3.

B. 2.

Câu 13. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≥ 3.
C. m > 3.
D. m ≤ 3.
Trang 1/5 Mã đề 1



1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.

Câu 14. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey + 1.

Câu 15. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
!
"
!
" đây?
5
5
D.
;3 .
A. (1; 2).
B. [3; 4).
C. 2; .
2
2
log 2x


x2
1 − 2 ln 2x
1 − 2 log 2x
B. y0 = 3
.
C. y0 =
.
x ln 10
x3


ab.

Câu 16. [1229d] Đạo hàm của hàm số y =
A. y0 =

1 − 4 ln 2x
.
2x3 ln 10





D. y0 =

2x3

1

.
ln 10

− 3m + 4 = 0 có nghiệm
3
9
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
4
4
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
Câu 18. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
Pmin của P = x +
√ y.



18 11 − 29
9 11 − 19
9 11 + 19
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
21
9

9
3
Câu 17. [12215d] Tìm m để phương trình 4 x+
3
B. m ≥ 0.
A. 0 < m ≤ .
4

1−x2

− 4.2 x+

1−x2

Câu 19. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 13.
C. log2 2020.
D. 2020.
Câu 20. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
B. 9.
C. 6.
D. .
A. .
2
2
cos n + sin n

Câu 21. Tính lim
n2 + 1
A. +∞.
B. −∞.
C. 1.
D. 0.
7n2 − 2n3 + 1
Câu 22. Tính lim 3
3n + 2n2 + 1
2
A. 0.
B. - .
3

C.

7
.
3

D. 1.

Câu 23. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
= 0.
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
v! n
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.

vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Câu 24. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
n2 − 2
A. un =
.
B.
u
=
.
n
(n + 1)2
5n − 3n2
Câu 25. Tính lim
A.

2
.
3

C. un =

1 − 2n
.

5n + n2

D. un =

n2 − 3n
.
n2

2n2 − 1
3n6 + n4
B. 0.

C. 1.

D. 2.
Trang 2/5 Mã đề 1


Câu 26. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
B. +∞.

A. 0.
5
Câu 27. Tính lim
n+3
A. 0.

C. 1.

un

bằng
vn
D. −∞.

B. 3.

C. 1.
D. 2.
1 + 2 + ··· + n
Câu 28. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = .
B. Dãy số un khơng có giới hạn khi n → +∞.
2
C. lim un = 0.
D. lim un = 1.
Câu 29. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 1.

C. 2.

D. 3.
!

3n + 2
2
Câu 30. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 3.
B. 5.
C. 4.
D. 2.
Câu 31. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và


√ (A C D) bằng

a 3
a 3
2a 3
.
B.
.
C.
.
D. a 3.
A.
2
3
2

Câu 32. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng



a 6
.
B. a 3.
C. 2a 6.
D. a 6.
A.
2
Câu 33. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng


a 2
a 2
.
B.
.
C. a 2.
D. 2a 2.
A.
2
4


Câu 34. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a
3a 58
3a 38
a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 35. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
.
B. √

.
C. √
.
D. √
.
A. 2
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 36. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
A. a 2.
B. a 3.
C.
.
D.
.
3
2
Trang 3/5 Mã đề 1



[ = 60◦ , S O
Câu 37. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S√BC) bằng


a 57
2a 57
a 57
B.
A. a 57.
.
C.
.
D.
.
17
19
19
Câu 38. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a
a
a 3
.
B. .
C. a.
D. .
A.
2

2
3
d = 30◦ , biết S BC là tam giác đều
Câu 39. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
16
13
26
9
d = 120◦ .
Câu 40. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
A. 3a.

B. 2a.
C. 4a.
D.
2
Câu 41. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. (II) và (III).

C. (I) và (II).

D. Cả ba mệnh đề.

Câu 42. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
dx = log |u(x)| + C.
B.
u(x)
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 43. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.

C. f (x) có giá trị lớn nhất trên K.

B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) liên tục trên K.

Câu 44.
Z [1233d-2] Mệnh đề nào sau đây sai?

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
B.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.

A.

Câu 45. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
Trang 4/5 Mã đề 1


(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (II) đúng.

C. Cả hai đều sai.

D. Chỉ có (I) đúng.

Câu 46.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
( f (x) + g(x))dx =

A.
Z
C.

( f (x) − g(x))dx =

f (x)dx +

Z

g(x)dx.


f (x)dx −

Z
g(x)dx.

D.

Câu 47.
! định nào sau đây là sai?
Z Các khẳng
0

A.
Z
C.

k f (x)dx = f

B.

Z

f (x)dx = f (x).
Z
k f (x)dx = k
f (x)dx, k là hằng số.

Z
B.
Z

D.

f (x)g(x)dx =

Z

f (x)dx, k ∈ R, k , 0.
Z
f (x)dx g(x)dx.

f (x)dx = F(x) + C ⇒

Z

f (t)dt = F(t) + C.

f (x)dx = F(x) +C ⇒

Z

f (u)dx = F(u) +C.

Câu 48. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) trên khoảng (a; b).
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 49. Mệnh đề nào sau đây sai?
Z

A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
C.
f (x)dx = f (x).
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 50. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

3. A
D


5.
7.
9. A
13.

C

4.

C

8.

B

10.

B

12.

B

14.

B
D

15.

17.

C

6. A

C

11.

2.

16.

D

22.

23.

B

24.

25.

B

26. A


27. A
C

34.
D

D
C

40.
C
D

B

47.

B

38.

B

43.

D

36.

B


41.

C

32.

B

37.

49.

C

30.

33. A

45.

B

28. A

29.

39.

D


20. A

21.

35.

B

18.

C

19. A

31.

C

D
B

1

D

42.

B


44.

B

46.

D

48.

D

50.

D



×