Tải bản đầy đủ (.pdf) (6 trang)

Đề môn toán ôn tập thpt qg (288)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (115.04 KB, 6 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

x+2
bằng?
x→2
x
A. 3.
B. 2.
3
x −1
Câu 2. Tính lim
x→1 x − 1
A. −∞.
B. 0.
2n + 1
Câu 3. Tìm giới hạn lim
n+1
A. 0.
B. 3.
2−n
Câu 4. Giá trị của giới hạn lim
bằng
n+1
A. 0.


B. −1.
2n − 3
Câu 5. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. +∞.
x−3
Câu 6. [1] Tính lim
bằng?
x→3 x + 3
A. −∞.
B. +∞.
Câu 1. Tính lim

Câu 7. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
n
C. lim qn = 0 (|q| > 1).
x2 − 12x + 35
25 − 5x
2
B. − .
5
x+1
Câu 9. Tính lim
bằng
x→+∞ 4x + 3
1

A. 1.
B. .
4
2
Câu 10. Giá trị của lim(2x − 3x + 1) là
Câu 8. Tính lim
x→5
2
A. .
5

x→1

A. 1.

B. 0.

C. 1.

D. 0.

C. +∞.

D. 3.

C. 2.

D. 1.

C. 2.


D. 1.

C. 0.

D. 1.

C. 1.

D. 0.

B. lim un = c (un = c là hằng số).
1
D. lim = 0.
n

C. +∞.

C.

1
.
3

C. +∞.

D. −∞.

D. 3.


D. 2.

Câu 11. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. .
C. 6.
D. 9.
2
2
log(mx)
Câu 12. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m ≤ 0.
C. m < 0 ∨ m > 4.
D. m < 0.
Câu 13. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 2020.
C. 13.
D. log2 13.
Câu 14. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m > 3.

D. m < 3.
Trang 1/5 Mã đề 1




Câu 15. [12215d] Tìm m để phương trình 4 x+
3
3
A. 0 ≤ m ≤ .
B. 0 < m ≤ .
4
4

1−x2



− 4.2 x+

1−x2

− 3m + 4 = 0 có nghiệm

Câu 16. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 4.


9
D. 0 ≤ m ≤ .
4

C. m ≥ 0.

C. 1.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 3.

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 − 19
9 11 + 19
18 11 − 29
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =

.
9
9
21
3
1
Câu 18. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 < m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.

Câu 19. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
;3 .
C. 2; .
A. [3; 4).
B.
D. (1; 2).
2
2
Câu 17. [12210d] Xét các số thực dương x, y thỏa mãn log3

log 2x


Câu 20. [1229d] Đạo hàm của hàm số y =
x2
1
1 − 2 log 2x
1 − 4 ln 2x
1 − 2 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.
3
3
2x ln 10
x
2x ln 10
x ln 10
Câu 21. Phát biểu nào sau đây là sai?
1
A. lim qn = 1 với |q| > 1.
B. lim k = 0 với k > 1.
n
1
C. lim un = c (Với un = c là hằng số).
D. lim √ = 0.
n
cos n + sin n

Câu 22. Tính lim
n2 + 1
A. 1.
B. −∞.
C. +∞.
D. 0.
2
2
2
1 + 2 + ··· + n
Câu 23. [3-1133d] Tính lim
n3
2
1
A. .
B. 0.
C. +∞.
D. .
3
3
5
Câu 24. Tính lim
n+3
A. 0.
B. 1.
C. 3.
D. 2.
1 + 2 + ··· + n
Câu 25. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?

n2 + 1
1
A. lim un = 1.
B. lim un = .
2
C. lim un = 0.
D. Dãy số un khơng có giới hạn khi n → +∞.
un
Câu 26. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. 0.
C. 1.
D. +∞.
Câu 27. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
Trang 2/5 Mã đề 1


(III) lim qn = +∞ nếu |q| > 1.
A. 3.

B. 0.

C. 2.

1
1
1

+
+ ··· +
1 1+2
1 + 2 + ··· + n
3
A. +∞.
B. .
C. 2.
2
!
1
1
1
Câu 29. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
C. 1.
A. 0.
B. .
2

D. 1.
!

Câu 28. [3-1131d] Tính lim

D.


5
.
2

D. 2.
!
3n + 2
2
Câu 30. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 5.
C. 2.
D. 3.
Câu 31. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




a 3
a 3
2a 3
B.
.
C.
.

D.
.
A. a 3.
3
2
2
Câu 32. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng




a 6
a 6
a 6
B.
.
C.
.
D.
.
A. a 6.
2
6
3
Câu 33. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab

ab
.
C. √
.
D. √
.
A. 2
.
B. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2

Câu 34. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng


3a
3a 38
3a 58
a 38
.
B.
.
C.
.

D.
.
A.
29
29
29
29
Câu 35. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng



a 2
a 2
A.
.
B. 2a 2.
C.
.
D. a 2.
2
4
3a
Câu 36. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng


a
2a
a 2
a
A. .
B.
.
C.
.
D. .
4
3
3
3
Câu 37. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
A.
.
B. a 3.
C. a 2.
D.
.
3
2

Trang 3/5 Mã đề 1


Câu 38. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng



a 6
.
B. a 3.
A.
C. a 6.
D. 2a 6.
2
Câu 39. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. .
B. .
C.
.
D. a.
3
2
2

Câu 40. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
c a2 + b2
abc b2 + c2
a b2 + c2
b a2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 41.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
A.
Z
B.


[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
C.

Câu 42. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.


B. Chỉ có (II) đúng.

C. Cả hai câu trên sai.

D. Cả hai câu trên đúng.

Câu 43. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 44. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
D.
f (x)dx = f (x).
Câu 45. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
Trang 4/5 Mã đề 1



(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Câu (III) sai.

C. Khơng có câu nào D. Câu (I) sai.
sai.
Câu 46. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. Cả ba mệnh đề.

C. (II) và (III).

Câu 47.
Z Trong các khẳng định sau, khẳng định nào sai? Z
0dx = C, C là hằng số.

A.
Z
C.

B.
Z


1
dx = ln |x| + C, C là hằng số.
x

D.

D. (I) và (III).

dx = x + C, C là hằng số.
xα+1
x dx =
+ C, C là hằng số.
α+1
α

Câu 48. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều đúng.

C. Chỉ có (II) đúng.

D. Cả hai đều sai.

Câu 49.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?

( f (x) − g(x))dx =

A.
Z
C.

( f (x) + g(x))dx =

f (x)dx −
Z

f (x)dx +

g(x)dx.

B.

Z

Z
g(x)dx.

D.

f (x)g(x)dx =
f (x)dx g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.


Câu 50. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.


2.

B

3.

C

4.

5.

C

6.

7.

C

8. A

9.

B

10.

11.


B

12. A

13.

D

14.

15. A
D

D
B
B

B
D

23.

C

18. A

21. A
25.


B

16.

17.
19.

D

20.

D

22.

D

24. A

B

26.

27.

C

28.

29.


C

30. A

31.

B

32.

33.

B

34.

35. A

36.

B
C
C
D
B

37.

D


38.

39.

D

40.

D

42.

D

41.

B

43. A

44.

45.

C

47.
49.


C

C

46. A
D

48.

B

50.

1

C
B



×