Tải bản đầy đủ (.pdf) (5 trang)

Ôn tập môn toán thpt (702)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (117.15 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
C là


3
a3
a3 3
a 3
3
.
B.
.
C. a .
D.
.
A.
2
3
6
Câu 2. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .


Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
a3 3
4a3 3
2a3 3
5a 3
.
B.
.
C.
.
D.
.
A.
3
2
3
3
Câu 3. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 2
A. un =
.
B.
u

=
.
n
5n + n2
5n − 3n2

C. un =

n2 − 3n
.
n2

Câu 4. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −7.
C. −5.

D. un =

n2 + n + 1
.
(n + 1)2

D. −3.

Câu 5. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.

Câu 6. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá trị
của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = −18.
C. y(−2) = 6.
D. y(−2) = 2.
Câu 7. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 1.
B. T = e + 3.
C. T = 4 + .
D. T = e + .
e
e
Câu 8. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
B. .
C.
.
D. a.
A. .
2
3
2

1
Câu 9. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m−2 có nghiệm duy nhất?
3
A. 3.
B. 4.
C. 2.
D. 1.

Câu 10. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3

a3
a 3
a3 3
3
A.
.
B.
.
C. a 3.
D.
.
3
4
12
 π
x

Câu 11. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2


3 π6
1 π3
2 π4
A.
e .
B. 1.
C. e .
D.
e .
2
2
2
Câu 12. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là

3
3
a
4a 3
a3
2a3 3
A.
.
B.
.

C.
.
D.
.
3
3
6
3
Trang 1/4 Mã đề 1


Câu 13. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. −e.
B. − .
C. − 2 .
2e
e

1
D. − .
e

Câu 14. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng




a 2
a 2
B.
.
C. a 2.
D.
.
A. 2a 2.
2
4
Câu 15. Khối lập phương thuộc loại
A. {3; 3}.
B. {4; 3}.

C. {3; 4}.

D. {5; 3}.

Câu 16. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
0
B. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
D. Nếu

Câu 17. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {5; 2}.
C. {3}.
D. {5}.
1
Câu 18. [1] Giá trị của biểu thức log √3
bằng
10
1
B. 3.
A. − .
3

C.

1
.
3


D. −3.

Câu 19. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. m ≥ 3.
C. −3 ≤ m ≤ 3.
D. m ≤ 3.
Z 3
x
a
a
Câu 20. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = 28.
C. P = −2.
D. P = 4.
Câu 21. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3 3

a3
A.
.
B.
.
C.
.
D.
.
12
8
4
4
!
1
1
1
Câu 22. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. +∞.
B. .
C. .
D. 2.
2
2
[ = 60◦ , S A ⊥ (ABCD).

Câu 23. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là


a3 2
a3 3
a3 2
3
A.
.
B. a 3.
C.
.
D.
.
12
6
4
Câu 24. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. Khối bát diện đều.

D. Khối lập phương.
Trang 2/4 Mã đề 1


Câu 25. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|





12 17
B. 34.
C.
.
D. 68.
A. 5.
17
Câu 26. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = ln x − 1.

C. y0 = 1 − ln x.

D. y0 = 1 + ln x.

Câu 27.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
B.

[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
x+1
Câu 28. Tính lim
bằng
x→−∞ 6x − 2
1
1
A. .
B. .
3
2

C.

1
.
6

D. 1.


Câu 29. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
A. 2 13.
.
B. 26.
C. 2.
D.
13
d = 30◦ , biết S BC là tam giác đều
Câu 30. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.

A.
16
9
13
26

Câu 31. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
πa3 3
πa3 3
πa3 3
πa3 6
.
B. V =
.
C. V =
.
D. V =
.
A. V =
2
6
3
6
Câu 32. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .

A. A0 (−3; 3; 3).
B. A0 (−3; −3; −3).
C. A0 (−3; −3; 3).
D. A0 (−3; 3; 1).
0 0 0 0
0
Câu 33.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 6
a 3
a 6
a 6
A.
.
B.
.
C.
.
D.
.
3
2
2
7
1 − n2
Câu 34. [1] Tính lim 2
bằng?
2n + 1
1

1
1
A. .
B. .
C. − .
D. 0.
3
2
2
x+2
Câu 35. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. Vô số.
C. 1.
D. 2.

Câu 36. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 30.

C. 12.

D. 10.
Trang 3/4 Mã đề 1


Câu 37. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )

A. P = 21.
B. P = −10.
C. P = −21.
D. P = 10.

Câu 38. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 64.
C. 63.
D. Vô số.
Câu 39. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 4}.
Câu 40. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 12.

C. {5; 3}.

D. {3; 3}.

C. 8.

D. 20.

Câu 41. [2] Cho hàm số f (x) = ln(x + 1). Giá trị f (1) bằng
1
ln 2
.

B. 2.
C. .
D. 1.
A.
2
2
Câu 42. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1728
1079
1637
A.
.
B.
.
C.
.
D.
.
68
4913
4913
4913
Câu 43. [1] Đạo hàm của làm số y = log x là
ln 10
1
1
1
.

B. y0 = .
C.
.
D. y0 =
.
A. y0 =
x
x
10 ln x
x ln 10
Câu 44. Hàm số nào sau đây khơng có cực trị
x−2
1
B. y =
.
C. y = x4 − 2x + 1.
D. y = x3 − 3x.
A. y = x + .
x
2x + 1
x3 − 1
Câu 45. Tính lim
x→1 x − 1
A. −∞.
B. 0.
C. 3.
D. +∞.
4

0


Câu 46. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 3.

C. 4.

D. 1.

Câu 47. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 220 triệu.
C. 216 triệu.
D. 212 triệu.
Câu 48. Dãy số nào sau đây có giới hạn khác 0?
n+1
sin n
A.
.
B.
.

n
n
x+2
Câu 49. Tính lim
bằng?
x→2
x
A. 2.
B. 3.

C.

1
.
n

C. 1.

Câu 50. [2] Tổng các nghiệm của phương trình log4 (3.2 − 1) = x − 1 là
A. 1.
B. 3.
C. 2.

1
D. √ .
n

D. 0.

x


D. 5.

- - - - - - - - - - HẾT- - - - - - - - - Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3. A

4. A
C

5.
7.

6.

B
B

8.

B


D

9.

D

10. A

11.

D

12.

B
B

13.

B

14.

15.

B

16.
D


17.
21.

18. A

C

19.
B

D

23.
25.

C

27. A
29.

D

31.

C
D

37.

20.


D

22.

D

24.

D

26.

D

28.

C

30.

C

32. A

33. A
35.

C


34.

C

36.

C

38. A

C

39.

B

40.

D

41.

B

42.

D

43.
45.

47.

D
C
D

44.

B

46.

B

48. A

49. A

50.

1

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×