Tải bản đầy đủ (.pdf) (5 trang)

Ôn tập môn toán thpt (733)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (120.94 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
D. 25.
A. 5.
B. 5.
C. .
5
Câu 2. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 √
+ 1)2 x trên [0; 1] bằng 8 √
A. m = ±1.
B. m = ±3.
C. m = ± 3.
D. m = ± 2.


Câu 3. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. −e.
B. − 2 .


C. − .
D. − .
e
e
2e
0 0 0
Câu 4. [4-1214h] Cho khối lăng trụ ABC.A B C , khoảng cách từ√C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √

2 3
A. 3.
B. 2.
C.
.
D. 1.
3
log(mx)
= 2 có nghiệm thực duy nhất
Câu 5. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0.
C. m ≤ 0.
D. m < 0 ∨ m > 4.
Câu 6. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

A. 6 mặt.
B. 4 mặt.
C. 5 mặt.

D. 3 mặt.

Câu 7. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 5
a3 3
A.
.
B.
.
C.
.
D.
.
6
4
12
12
Câu 8. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 20.

C. 3, 55.
D. 15, 36.
mx − 4
Câu 9. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 45.
C. 67.
D. 34.
5
Câu 10. Tính lim
n+3
A. 1.
B. 3.
C. 2.
D. 0.
Câu 11. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Hai mặt.
C. Bốn mặt.

D. Năm mặt.

Câu 12. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=

. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (3; 4; −4).
C. ~u = (2; 1; 6).
D. ~u = (1; 0; 2).
Câu 13. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (1; 3; 2).
C. (2; 4; 3).
D. (2; 4; 4).
Trang 1/4 Mã đề 1


Câu 14. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. .
B. 1.
C. .
D. 3.
2
2
Câu 15. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?

A. 8.
B. 6.
C. 3.
D. 4.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 16. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 2
a3 3
2
.
B. 2a 2.
C.
.
D.
.
A.
12
24
24


Câu 17. [12215d] Tìm m để phương trình 4 x+
9
3

A. 0 ≤ m ≤ .
B. 0 < m ≤ .
4
4

1−x2



− 3m + 4 = 0 có nghiệm
3
C. 0 ≤ m ≤ .
D. m ≥ 0.
4

− 4.2 x+

1−x2

1

Câu 18. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = R.
C. D = (1; +∞).

D. D = R \ {1}.

Câu 19. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.

B. 9 cạnh.

D. 11 cạnh.

C. 12 cạnh.

x2
Câu 20. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
B. M = e, m = .
C. M = e, m = 1.
D. M = e, m = 0.
A. M = , m = 0.
e
e
Câu 21. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 5%.
C. 0, 6%.
D. 0, 7%.
Câu 22. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều.
Câu 23. Tính lim
x→3


A. 6.

x2 − 9
x−3

Câu 24. Hàm số y =
A. x = 0.

B. 3.

x − 3x + 3
đạt cực đại tại
x−2
B. x = 3.

C. Khối tứ diện đều.

D. Khối 12 mặt đều.

C. +∞.

D. −3.

C. x = 2.

D. x = 1.

2

Câu 25. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦ và tam

giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là

√ hình chóp S .ABCD với mặt
2
2
2
a 5
a 7
11a
a2 2
A.
.
B.
.
C.
.
D.
.
16
8
32
4
Câu 26. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; −3; 3).
C. A0 (−3; −3; −3).

D. A0 (−3; 3; 3).


Câu 27. Phần thực và √
phần ảo của số phức
z
=
2

1

3i lần lượt √l


A. Phần thực là 1√− 2, phần ảo là −√ 3.
B. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 2, phần ảo là 1 − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
Trang 2/4 Mã đề 1


4x + 1
Câu 28. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. −4.
C. 2.
1 − 2n
Câu 29. [1] Tính lim

bằng?
3n + 1
1
2
2
A. .
B. − .
C. .
3
3
3
Câu 30. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. 1 nghiệm.
C. Vô nghiệm.
2n − 3
Câu 31. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. 1.
C. +∞.

D. −1.

D. 1.
D. 2 nghiệm.

D. −∞.


Câu 32. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 1.
C. 2.
D. Vô số.
1
Câu 33. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. −1.
C. 1.
D. 2.
Câu 34. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.

B. (I) và (II).

C. (II) và (III).
D. (I) và (III).
1 − xy
Câu 35. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.




9 11 + 19
9 11 − 19
2 11 − 3
18 11 − 29
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
9
9
3
21
Câu 36. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [1; +∞).
C. [−3; 1].
D. (−∞; −3].
[ = 60◦ , S A ⊥ (ABCD).
Câu 37. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√chóp S .ABCD là
√ S C là a. Thể tích khối

a3 2

a3 3
a3 2
A.
.
B.
.
C.
.
D. a3 3.
12
6
4
!2x−1
!2−x
3
3
Câu 38. Tập các số x thỏa mãn


5
5
A. (+∞; −∞).
B. [1; +∞).
C. [3; +∞).
D. (−∞; 1].
!
3n + 2
2
Câu 39. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử

n+2
của S bằng
A. 5.
B. 2.
C. 4.
D. 3.
Câu 40. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.

C. Khối 12 mặt đều.

D. Khối tứ diện đều.
Trang 3/4 Mã đề 1


Câu 41. Tứ diện đều thuộc loại
A. {4; 3}.
B. {3; 4}.

C. {3; 3}.

D. {5; 3}.

Câu 42. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 10 năm.

C. 12 năm.
D. 14 năm.
Câu 43. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

B. aαβ = (aα )β .
C. aα+β = aα .aβ .
D. aα bα = (ab)α .
A. β = a β .
a
Câu 44. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó không rút tiền
ra.
A. 212 triệu.
B. 210 triệu.
C. 216 triệu.
D. 220 triệu.
Câu 45. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 8.

C. 6.

D. 10.

Câu 46. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e

1 + 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4 − 2e
4 − 2e

D. m =

Câu 47. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 4.

B. −1.

C. 2.

3

1 − 2e
.
4e + 2
Z

6

3x + 1

. Tính

1

f (x)dx.
0

D. 6.

Câu 48. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
D. 27.
A. 18.
B. 12.
C.
2
Câu 49. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 50. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
=
=

và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x−2 y+2 z−3
x−2 y−2 z−3
A.
=
=
.
B.
=
=
.
2
2
2
2
3
4
x y z−1
x y−2 z−3
C. = =
.

D. =
=
.
1 1
1
2
3
−1
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2.

3.

D

4.

B


6.

B

5. A

D

8.

D

10.

D

11. A

12.

D

13. A

14. A

7.

C
D


9.

15.

C

16.

17.

C

18.

C

20.

19. A
21.

D

D

22. A

23. A


24.

D
D

25.

B

26.

27.

B

28. A

29.

B

30.

31. A

32.

33. A

34.


35.

C

36.

37.

C

38.

39.

C

40.

41.

C

42. A

43. A

44. A

45. A


46.

47. A

48. A

49.

D

50.

C

1

D
C
B
C
B
D

D
C




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×