Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập toán lớp 12 số 4 (225)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (117.25 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.423.000.
C. 102.016.000.
D. 102.424.000.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 2. [2] Phương trình log x 4 log2
12x − 8
A. 1.
B. Vô nghiệm.
C. 3.
D. 2.
2

Câu 3. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1


1
A. 3 .
B. 2 .
C. √ .
2e
e
2 e
Câu 4. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. Vơ nghiệm.
C. 2 nghiệm.

D.

2
.
e3

D. 1 nghiệm.

Câu 5. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số mặt của khối chóp bằng 2n+1.
D. Số cạnh của khối chóp bằng 2n.
3

Câu 6. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e2 .

C. e.
Câu 7. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).


4n2 + 1 − n + 2
Câu 8. Tính lim
bằng
2n − 3
3
A. .
B. 1.
C. +∞.
2

D. e5 .

D. 2.

Câu 9. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều rộng
bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 120 cm2 .
D. 160 cm2 .
1
Câu 10. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch

3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 < m < −1.
C. −2 ≤ m ≤ −1.
D. (−∞; −2] ∪ [−1; +∞).
log(mx)
Câu 11. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m ≤ 0.
un
Câu 12. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. −∞.
C. 0.
D. 1.
Trang 1/4 Mã đề 1


Câu 13. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 2.
C. Vô nghiệm.
D. 3.
Câu 14. [1] Đạo hàm của làm số y = log x là
ln 10

1
1
1
.
B. y0 =
.
C. y0 = .
D.
.
A. y0 =
x ln 10
x
x
10 ln x
Câu 15. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3
!
!
1
1
C. Hàm số nghịch biến trên khoảng −∞; .
D. Hàm số đồng biến trên khoảng ; 1 .
3
3
Câu 16. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.

B. 8 m.
C. 16 m.
D. 24 m.

Câu 17. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
6
18
36
Câu 18. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 3).

B. A0 (−3; 3; 1).
C. A0 (−3; −3; 3).
D. A0 (−3; −3; −3).
Câu 19. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là 4, phần ảo là −1.
Câu 20. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 0.
B. 7.
2−n
Câu 21. Giá trị của giới hạn lim
bằng
n+1
A. 1.
B. 0.
Câu 22. [2] Tổng các nghiệm của phương trình 3
A. 1 − log2 3.
B. 1 − log3 2.

C. 5.

D. 9.

C. 2.
x−1

x2


D. −1.

.2 = 8.4 là
C. 2 − log2 3.
x−2

D. 3 − log2 3.

Câu 23. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a


a3 15
a3 5
a3 15
a3
.
B.
.
C.
.
D.
.
A.
3
5
25
25
Câu 24. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)

A. 0.
B. 13.
C. 9.
D. Không tồn tại.
Câu 25. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = (0; +∞).

C. D = R \ {1}.

D. D = R \ {0}.

Câu 26. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {2}.
C. {5}.
D. {5; 2}.
Câu 27. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = R.
C. D = (−2; 1).
D. D = R \ {1; 2}.
1 + 2 + ··· + n
Câu 28. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = .
2

C. lim un = 0.
D. lim un = 1.
2

Trang 2/4 Mã đề 1


Câu 29. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
1 − 2n
.
B.
u
=
.
A. un =
n
5n + n2
n2

C. un =

n2 + n + 1
.
(n + 1)2


Câu 30. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1

A. 3.
B. .
C. − .
3
3

Câu 31. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 6.
C. 108.

D. un =

n2 − 2
.
5n − 3n2

D. −3.
D. 4.

Câu 32. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
! x3 −3mx2 +m
1
nghịch biến trên
Câu 33. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m ∈ (0; +∞).

C. m = 0.
D. m , 0.
Câu 34. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4e + 2
4 − 2e

D. m =

1 − 2e
.
4 − 2e


Câu 35. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
πa3 3

πa3 6
πa3 3
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
3
6
6
2
0 0 0 0
0
Câu 36.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.

D.
.
2
7
2
3
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 37. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 2
a3 3
2
A.
.
B. 2a 2.
C.
.
D.
.
12
24
24
q
Câu 38. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i

h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 2].
C. m ∈ [0; 4].
D. m ∈ [0; 1].
Câu 39. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 2.
C. −4.

D. 4.

Câu 40. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. Cả ba câu trên đều sai.
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
Câu 41. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 7.
B. 2.
C. 1.
D. 3.
t
9
Câu 42. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .

A. 0.
B. 1.
C. Vô số.
D. 2.
Trang 3/4 Mã đề 1


Câu 43. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.

B. 3.

C. 4.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 2.

Câu 44. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 91cm3 .
C. 84cm3 .
D. 48cm3 .
x2
Câu 45. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó

e
1
1
B. M = e, m = 0.
C. M = e, m = 1.
D. M = e, m = .
A. M = , m = 0.
e
e
Câu 46. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 24.
C. 23.
D. 22.
Câu 47. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m < 3.
C. m ≥ 3.
D. m ≤ 3.
Câu 48. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
; +∞ .
A. −∞; − .

B.
C. −∞; .
2
2
2

!
1
D. − ; +∞ .
2

Câu 49. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là
3
3
3
3
8a 3
4a 3
8a 3
a 3
A.
.
B.
.
C.
.

D.
.
9
9
3
9
2n2 − 1
Câu 50. Tính lim 6
3n + n4
2
B. 2.
C. 1.
D. 0.
A. .
3
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.

D

2. A
4.


B
D

5.

8.
D

11. A
13.

B

10.

C

12.

C

16.
C

17.

D

20.


21.

D

22.

23.

D

24. A

25. A
B
D

31.
33.

C

C
C

28.

B

30.


B

32.

B

34. A
D

36.

35. A
C

37.

38. A

39. A

40.
42.

B

43. A
47.

D


26.

29. A

45.

C

18. A

19.

41.

B

14. A

15. A

27.

D

6.

7. A
9.


C

C
D

44. A
B
C

49. A

1

46.

D

48.

D

50.

D



×