Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 0.
B. 5.
x+1
bằng
Câu 2. Tính lim
x→−∞ 6x − 2
1
1
A. .
B. .
2
3
4x + 1
Câu 3. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. 4.
C. 7.
D. 9.
C. 1.
D.
C. 2.
D. −1.
1
.
6
√
Câu 4. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là
√
√
√
a3 3
a3 3
a3
3
A. a 3.
.
C.
.
D.
.
B.
4
12
3
Câu 5. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
n
C. lim un = c (un = c là hằng số).
B. lim qn = 0 (|q| > 1).
1
D. lim = 0.
n
3
2
Câu 6. [2] Tìm m để giá trị lớn nhất của
+ 1)2 x trên [0; 1] bằng 8
√ hàm số y = 2x + (m √
A. m = ±3.
B. m = ± 2.
C. m = ± 3.
D. m = ±1.
Câu 7. Dãy
!n số nào sau đây có giới
!n hạn là 0?
5
5
B.
.
A. − .
3
3
!n
1
C.
.
3
Câu 8. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 3n
A. un =
.
B.
u
=
.
n
5n + n2
n2
C. un =
!n
4
D.
.
e
n2 − 2
.
5n − 3n2
D. un =
n2 + n + 1
.
(n + 1)2
Câu 9. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 3.
C. −3.
D. 0.
Câu 10. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 4.
C. 3.
D. 5.
2
x
Câu 11. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = , m = 0.
C. M = e, m = .
D. M = e, m = 0.
e
e
Câu 12. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R \ {1; 2}.
C. D = [2; 1].
2
Câu 13. [1-c] Giá trị của biểu thức
A. −2.
B. 2.
log7 16
log7 15 − log7
15
30
D. D = R.
bằng
C. 4.
Câu 14. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. −1.
C. 6.
D. −4.
D. 2.
Trang 1/10 Mã đề 1
Câu 15. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3
3
a
4a 3
2a3 3
a3
A.
.
B.
.
C.
.
D.
.
3
3
3
6
Câu 16. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A.
.
B. 2.
C. .
D. 1.
2
2
x−3 x−2 x−1
x
Câu 17. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. [2; +∞).
C. (−∞; 2).
D. (−∞; 2].
Câu 18. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vuông góc
với (S BC).
√ là
√
√
√ Thể tích khối chóp S 3.ABC
3
a 2
a3 3
a3 3
a 3
.
B.
.
C.
.
D.
.
A.
4
12
12
6
Câu 19. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2
√
A. −3 + 4 2.
B. 3 − 4 2.
C. −3 − 4 2.
√
D. 3 + 4 2.
Câu 20. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là 4, phần ảo là −1.
√
Câu 21. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
3
2
6
log(mx)
Câu 22. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0.
C. m < 0 ∨ m > 4.
D. m ≤ 0.
Câu 23. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.423.000.
C. 102.424.000.
D. 102.016.000.
Câu 24. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
.
B. 2
.
C. √
.
D. √
.
A. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 25. Giá trị của lim (3x2 − 2x + 1)
A. +∞.
x→1
B. 1.
C. 3.
D. 2.
Câu 26. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
9
18
15
6
Câu 27. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Trang 2/10 Mã đề 1
Câu 28.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:
3
3
3
A.
.
B.
.
C. .
2
12
4
2
Câu 29. Tìm giá trị nhỏ nhất của hàm số y = (x − 2x + 3)2 − 7
A. −5.
B. −3.
C. Không tồn tại.
√
3
D.
.
4
D. −7.
Câu 30. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng
√
√
√
b a2 + c2
c a2 + b2
a b2 + c2
abc b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 31. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. e.
C. 1.
D. 4 − 2 ln 2.
Câu 32. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
D. Khối bát diện đều.
C. Khối 12 mặt đều.
Câu 33. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = 10.
B. f 0 (0) =
.
C. f 0 (0) = 1.
ln 10
D. f 0 (0) = ln 10.
Câu 34. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 35. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) có giá trị nhỏ nhất trên K.
B. f (x) có giá trị lớn nhất trên K.
D. f (x) liên tục trên K.
[ = 60◦ , S O
Câu 36. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S√BC) bằng
√
√
a 57
2a 57
a 57
C.
A.
.
B. a 57.
.
D.
.
19
19
17
Câu 37. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m ≥ .
C. m > .
D. m < .
4
4
4
4
Câu 38. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 1.
C. 3.
D. 2.
2−n
Câu 39. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. 0.
C. −1.
D. 1.
Câu 40. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
5a
8a
a
.
B.
.
C.
.
D. .
A.
9
9
9
9
Câu 41. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
√
3
√
a 15
a3 6
a3 5
3
A. a 6.
B.
.
C.
.
D.
.
3
3
3
Trang 3/10 Mã đề 1
Câu 42. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −3 ≤ m ≤ 3.
C. m ≥ 3.
D. −2 ≤ m ≤ 2.
Câu 43. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. Không tồn tại.
C. 13.
D. 9.
d = 120◦ .
Câu 44. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B. 2a.
C.
.
D. 3a.
2
Câu 45. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
1 − 2n
Câu 46. [1] Tính lim
bằng?
3n + 1
2
2
A. − .
B. .
3
3
C.
1
.
3
D. 1.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e − 1.
C. xy0 = ey + 1.
D. xy0 = ey − 1.
Câu 47. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey + 1.
Câu 48. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 0.
C. m > 1.
D. m ≥ 0.
Câu 49. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 20, 128 triệu đồng. C. 3, 5 triệu đồng.
D. 50, 7 triệu đồng.
Câu 50. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m > 0.
C. m = 0.
D. m , 0.
Câu 51. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 2ac
3b + 3ac
.
B.
.
C.
.
D.
.
A.
c+1
c+2
c+2
c+3
1
Câu 52. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey − 1.
B. xy0 = −ey − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.
Câu 53. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 10 cạnh.
C. 12 cạnh.
D. 9 cạnh.
Câu 54. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −21.
C. P = −10.
D. P = 10.
Câu 55. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; −8)(.
C. A(−4; 8).
D. A(4; 8).
Câu 56. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. 1 + 2 sin 2x.
C. −1 + sin x cos x.
D. −1 + 2 sin 2x.
√
√
Câu 57. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l
√
A. Phần thực là 2, √
phần ảo là 1 − √
3.
B. Phần thực là √2 − 1, phần ảo là √
3.
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
Trang 4/10 Mã đề 1
Câu 58. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 8.
x3 − 1
Câu 59. Tính lim
x→1 x − 1
A. 3.
B. −∞.
C. 12.
D. 10.
C. +∞.
D. 0.
Câu 60. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 5 mặt.
C. 3 mặt.
D. 6 mặt.
Câu 61. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều.
D. Khối 20 mặt đều.
Câu 62. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 4.
C. 5.
D. 8.
Câu 63.
f (x), g(x) liên
đề nào sai? Z
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
C.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
D.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Câu 64. [2]√Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2
A. m = ± 3.
B. m = ± 2.
C. m = ±1.
D. m = ±3.
Câu 65. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (0; 2).
C. R.
D. (2; +∞).
p
ln x
1
Câu 66. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
8
1
1
B. .
C. .
D. .
A. .
3
3
9
9
Câu 67. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 3 mặt.
D. 4 mặt.
Câu 68. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 4.
D. 5.
C. 3.
0 0 0 0
0
Câu 69.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 6
a 3
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
2
3
7
Câu 70. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 2020.
C. log2 2020.
D. 13.
d = 30◦ , biết S BC là tam giác đều
Câu 71. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
26
13
16
9
Câu 72. Dãy số
!n nào có giới hạn bằng 0?
!n
6
−2
A. un =
.
B. un =
.
3
5
C. un =
n3 − 3n
.
n+1
D. un = n2 − 4n.
x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. [−3; +∞).
C. (−∞; −3].
D. (−3; +∞).
Câu 73. [4-1212d] Cho hai hàm số y =
Trang 5/10 Mã đề 1
Câu 74. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. −2.
B. .
C. − .
D. 2.
2
2
Câu 75. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. 3n3 lần.
C. n lần.
D. n3 lần.
1
Câu 76. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. 1.
C. −1.
D. −2.
n−1
Câu 77. Tính lim 2
n +2
A. 1.
B. 3.
C. 0.
D. 2.
!
3n + 2
2
Câu 78. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 3.
B. 2.
C. 5.
D. 4.
Câu 79. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng 2n+1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 80. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog
A. 25.
B. 5.
C.
√
a
5
√
bằng
D.
5.
Câu 81. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A. −∞; .
; +∞ .
B. −∞; − .
C.
2
2
2
Câu 82. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = 2 x . ln x.
B. y0 =
.
ln 2
C. y0 =
!
1
D. − ; +∞ .
2
1
2 x . ln
1
.
5
x
.
D. y0 = 2 x . ln 2.
Câu 83. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là
√
a3
a3 3
a3 3
3
A.
.
B.
.
C. a .
D.
.
3
3
9
2n + 1
Câu 84. Tìm giới hạn lim
n+1
A. 2.
B. 0.
C. 1.
D. 3.
Câu 85. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Chỉ có (I) đúng.
C. Cả hai đều đúng.
D. Chỉ có (II) đúng.
Câu 86. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√
√ là
3
3
3
3
8a 3
4a 3
8a 3
a 3
A.
.
B.
.
C.
.
D.
.
3
9
9
9
Trang 6/10 Mã đề 1
Câu 87. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (1; +∞).
C. (−∞; 1).
D. (−∞; −1).
x−1
Câu 88. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB
√ đều ABI có hai đỉnh A, √
√ có độ dài bằng
A. 6.
B. 2 2.
C. 2 3.
D. 2.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
Câu 89. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
Pmin của P = x√+ y.
√
√
√
9 11 + 19
2 11 − 3
9 11 − 19
18 11 − 29
A. Pmin =
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
9
3
9
21
Câu 90.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
k f (x)dx = k
A.
Z
B.
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
C.
Câu 91. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.
B. 2.
C. 3.
Câu 92. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. (1; 2).
C. (−∞; +∞).
2,4
Câu 93. [1-c] Giá trị của biểu thức 3 log0,1 10
A. 0, 8.
B. −7, 2.
bằng
C. 7, 2.
Câu 94. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều.
C. Khối 12 mặt đều.
D. 4.
D. [−1; 2).
D. 72.
D. Khối tứ diện đều.
Câu 95. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 12 năm.
D. 14 năm.
Câu 96. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. −2.
C. 2.
D. −4.
Câu 97. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = 2.
C. y(−2) = 22.
D. y(−2) = −18.
Câu 98. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có hai.
C. Có một hoặc hai.
D. Có một.
Trang 7/10 Mã đề 1
x+3
Câu 99. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 2.
C. 3.
D. 1.
Câu 100. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = loga 2.
C. log2 a = − loga 2.
D. log2 a =
.
loga 2
log2 a
Câu 101. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.
C. Khối tứ diện đều.
D. Khối bát diện đều.
Câu 102. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m > − .
B. − < m < 0.
C. m ≥ 0.
D. m ≤ 0.
4
4
1
Câu 103. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 < m ≤ 1.
C. 0 ≤ m ≤ 1.
D. 2 ≤ m ≤ 3.
!
1
1
1
+
+ ··· +
Câu 104. Tính lim
1.2 2.3
n(n + 1)
3
A. 1.
B. .
C. 0.
D. 2.
2
Câu 105.
√ Biểu thức nào sau đây khơng
√ 0 có nghĩa
−3
A.
−1.
B. (− 2) .
C. 0−1 .
D. (−1)−1 .
[ = 60◦ , S O
Câu 106. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S√BC) bằng
√
√
a 57
2a 57
a 57
A.
.
B. a 57.
C.
.
D.
.
17
19
19
Câu 107. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 24 m.
C. 8 m.
D. 16 m.
Câu 108. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Hai hình chóp tam giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 109. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục ảo.
D. Trục thực.
Câu 110. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Năm cạnh.
C. Bốn cạnh.
D. Ba cạnh.
Câu 111. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {5; 3}.
D. {3; 5}.
Câu 112. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y = x + .
B. y =
.
x
2x + 1
C. y = x4 − 2x + 1.
D. y = x3 − 3x.
Trang 8/10 Mã đề 1
Câu 113. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m < 3.
D. m ≤ 3.
Câu 114. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.1, 03
100.(1, 01)3
triệu.
B. m =
triệu.
A. m =
3
3
3
3
120.(1, 12)
(1, 01)
C. m =
triệu.
D. m =
triệu.
3
(1, 12) − 1
(1, 01)3 − 1
2
Câu 115. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. 2 .
B.
.
C. √ .
3
e
2e
2 e
2
.
e3
D.
Câu 116. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 117. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Tứ diện đều.
B. Thập nhị diện đều. C. Nhị thập diện đều. D. Bát diện đều.
Câu 118. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 119. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim+ f (x) = f (b).
D. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
√
Câu 120. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 36.
C. 6.
D. 4.
Câu 121. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d ⊥ P.
C. d nằm trên P.
D. d song song với (P).
√
Câu 122. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 38
3a
a 38
3a 58
A.
.
B.
.
C.
.
D.
.
29
29
29
29
2
2
Câu 123. [3-c]
và giá trị lớn nhất của hàm số f (x) = 2sin x + 2cos x√lần lượt là
√ Giá trị nhỏ nhất √
A. 2 và 2 2.
B. 2 2 và 3.
C. 2 và 3.
D. 2 và 3.
Câu 124. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m
√ của hàm số. Khi đó tổng
√
A. 8 3.
B. 8 2.
C. 16.
D. 7 3.
Trang 9/10 Mã đề 1
Câu 125. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
d = 300 .
Câu 126. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V3 √của khối lăng trụ đã cho.
√
3a3 3
a 3
A. V =
.
B. V =
.
C. V = 6a3 .
D. V = 3a3 3.
2
2
Câu 127. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 128. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (0; +∞).
C. (−∞; 2).
0
0
0
D. (−∞; 0) và (2; +∞).
0
Câu 129. [3] Cho hình lập phương ABCD.A B C D có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng
√
√
√
√
a 3
a 3
2a 3
B.
.
C.
.
D.
.
A. a 3.
2
3
2
Câu 130. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lăng trụ.
C. Hình lập phương.
D. Hình tam giác.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2.
D
D
3.
B
4.
5.
B
6.
7.
C
9.
C
8. A
10.
11.
D
12.
13.
D
14.
15.
B
16.
17.
B
18.
B
D
C
B
C
D
20.
19. A
21.
B
B
23.
22. A
24.
C
D
25.
D
27.
C
28.
D
29.
C
30.
C
31.
32. A
34.
B
33.
D
35.
D
37. A
36. A
38.
D
40.
42.
C
39.
C
41.
C
43. A
B
44.
45.
C
46. A
47.
48. A
49.
50.
D
53.
B
56.
58.
C
D
B
51.
52. A
54.
B
D
C
B
55.
D
57.
D
59. A
C
60. A
61. A
62. A
63. A
64.
C
65.
B
66.
C
68.
B
69.
C
70. A
1
71.
72. A
B
C
73.
75.
74. A
D
C
77.
79. A
D
78.
D
80. A
81.
82.
D
83. A
D
87. A
86.
C
88.
C
90. A
B
C
91.
B
94. A
95.
B
96.
97.
D
99.
D
102. A
104. A
105.
106.
C
107.
D
108.
D
112.
113. A
114.
115. A
116. A
B
118.
119.
D
121. A
125.
B
B
D
B
D
C
120.
D
122.
D
124.
C
126. A
C
127.
129.
C
110.
B
111.
123.
C
100. A
103. A
117.
B
98.
C
101.
C
92.
93.
109.
D
84. A
85.
89.
76.
D
C
2
128.
D
130.
D