Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 12 m.
C. 8 m.
D. 16 m.
Câu 2. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 9 cạnh.
C. 10 cạnh.
D. 11 cạnh.
Câu 3. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(−4; −8)(.
C. A(4; −8).
D. A(4; 8).
Câu 4. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lập phương.
C. Hình chóp.
D. Hình lăng trụ.
1
Câu 5. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; +∞).
C. (1; 3).
D. (−∞; 3).
Câu 6. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 20.
C. 10.
D. 30.
Câu 7. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.
C. Khối 12 mặt đều.
D. Khối tứ diện đều.
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 8. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (2; +∞).
C. (−∞; 2).
D. (−∞; 2].
Câu 9. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a =
.
C. log2 a =
.
D. log2 a = − loga 2.
loga 2
log2 a
Câu 10. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [−3; 1].
C. (−∞; −3].
D. [1; +∞).
Câu 11. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tứ giác.
Câu 12. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 0.
B. +∞.
C. 2.
Câu 13. Tìm m để hàm số y = x − 3mx + 3m có 2 điểm cực trị.
A. m < 0.
B. m , 0.
C. m = 0.
3
2
D. 1.
2
D. m > 0.
Câu 14. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
4a 3
5a3 3
a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
2
3
Trang 1/10 Mã đề 1
Câu 15. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n2 lần.
C. 2n3 lần.
D. n3 lần.
Câu 16. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
100.(1, 01)3
triệu.
B. m =
triệu.
A. m =
3
(1, 12)3 − 1
100.1, 03
(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
(1, 01)3 − 1
Câu 17. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.
C. Khối 12 mặt đều.
Câu 18. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 9 mặt.
C. 8 mặt.
D. Khối bát diện đều.
D. 6 mặt.
2n2 − 1
Câu 19. Tính lim 6
3n + n4
2
B. 2.
C. 0.
D. 1.
A. .
3
Câu 20. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là
√
√
A. 2, 4, 8.
B. 6, 12, 24.
C. 8, 16, 32.
D. 2 3, 4 3, 38.
1
Câu 21. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. − .
B. .
C. 3.
D. −3.
3
3
un
Câu 22. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. 0.
C. +∞.
D. 1.
log(mx)
Câu 23. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m < 0 ∨ m = 4.
D. m ≤ 0.
Câu 24.
đề nào sai? Z
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z
A.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Câu 25. Tính lim
x→1
A. 3.
x3 − 1
x−1
B. 0.
C. +∞.
D. −∞.
Câu 26. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e2 .
C. 2e4 .
D. −2e2 .
√
Câu 27. Cho chóp S .ABCD có đáy ABCD là hình vuông cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là
√
√
√
a3
a3 3
a3 3
3
A. a 3.
B.
.
C.
.
D.
.
4
3
12
Trang 2/10 Mã đề 1
Câu 28. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng
√
√
√
a 3
2a 3
a 3
.
B.
.
C.
.
D. a 3.
A.
2
3
2
x
9
Câu 29. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
D. 1.
A. 2.
B. −1.
C. .
2
Câu 30. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 12.
C. 8.
D. 30.
Câu 31. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 22 triệu đồng.
D. 2, 25 triệu đồng.
Câu 32. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối lăng trụ tam giác.
C. Khối tứ diện.
D. Khối lập phương.
Câu 33. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
C. y0 = x
.
A. y0 = 2 x . ln x.
B. y0 =
ln 2
2 . ln x
Câu 34. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2
√
B. 3 + 4 2.
C. 3 − 4 2.
A. −3 + 4 2.
Câu 35. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 4.
C. 2.
D. y0 = 2 x . ln 2.
√
D. −3 − 4 2.
D. 24.
Câu 36. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. .
C. 9.
D. 6.
2
2
1 + 2 + ··· + n
Câu 37. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 0.
B. Dãy số un khơng có giới hạn khi n → +∞.
1
C. lim un = 1.
D. lim un = .
2
Câu 38. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. log2 2020.
C. 2020.
D. 13.
Câu 39. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 0) và (2; +∞). C. (0; +∞).
Câu 40. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
c+2
c+3
c+1
√
√
D. (−∞; 2).
D.
3b + 2ac
.
c+2
Câu 41. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
9
3
3
A. 0 ≤ m ≤ .
B. m ≥ 0.
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
4
4
4
Câu 42. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 9.
B. 8.
C. 27.
D. 3 3.
2
2
Trang 3/10 Mã đề 1
Câu 43. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = 4 + .
C. T = e + 3.
D. T = e + 1.
A. T = e + .
e
e
√
Câu 44. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
C. 25.
D. .
A. 5.
B. 5.
5
Câu 45. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
dx = log |u(x)| + C.
C.
u(x)
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 46. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
Câu 47. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 1.
B. f 0 (0) = ln 10.
C. f 0 (0) =
1
.
ln 10
D. f 0 (0) = 10.
x−3
Câu 48. [1] Tính lim
bằng?
x→3 x + 3
A. 1.
B. +∞.
C. 0.
D. −∞.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 49. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = e − 1.
B. xy = −e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.
Câu 50. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Bốn mặt.
C. Hai mặt.
D. Năm mặt.
√
Câu 51. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 4.
C. 108.
D. 36.
◦
◦
d = 90 , ABC
d = 30 ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 52. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 3
a3 3
a3 2
2
A.
.
B.
.
C. 2a 2.
D.
.
24
12
24
Câu 53. Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i. √
√4
A. |z| = 5.
B. |z| = 5.
C. |z| = 2 5.
D. |z| = 5.
Câu 54.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) − g(x)]dx =
A.
Z
B.
[ f (x) + g(x)]dx =
g(x)dx, với mọi f (x), g(x) liên tục trên R.
f (x)dx −
Z
f (x)dx +
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
C.
Câu 55. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim f (x) = f (a).
x→a
C. lim+ f (x) = lim− f (x) = +∞.
D. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
x→a
Trang 4/10 Mã đề 1
√
Câu 56. Tính lim
A. +∞.
√
4n2 + 1 − n + 2
bằng
2n − 3
B. 1.
12 + 22 + · · · + n2
n3
B. +∞.
C.
3
.
2
D. 2.
C.
2
.
3
D.
Câu 57. [3-1133d] Tính lim
A. 0.
1
.
3
Câu 58. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
B. lim un = c (un = c là hằng số).
n
1
C. lim = 0.
D. lim qn = 0 (|q| > 1).
n
Câu 59. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. e.
C. 1.
D. 4 − 2 ln 2.
2n + 1
Câu 60. Tính giới hạn lim
3n + 2
2
3
1
C. .
D. .
A. 0.
B. .
2
3
2
Câu 61. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {5; 3}.
D. {3; 3}.
Câu 62.
√ [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
B. 3.
C. 1.
D. 2.
A. 5.
x+2
Câu 63. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. 1.
C. 2.
D. Vô số.
log2 240 log2 15
−
+ log2 1 bằng
Câu 64. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. 1.
B. 4.
C. −8.
D. 3.
mx − 4
Câu 65. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 34.
C. 67.
D. 26.
Câu 66. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3).
C. (−3; +∞).
D. (−∞; −3].
Câu 67. [4-1212d] Cho hai hàm số y =
Câu 68. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 69. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
Trang 5/10 Mã đề 1
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 70. Dãy! số nào có giới hạn bằng 0?
n
6
.
B. un = n2 − 4n.
A. un =
5
n3 − 3n
C. un =
.
n+1
!n
−2
D. un =
.
3
Câu 71. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 8π.
C. 32π.
D. V = 4π.
Câu 72. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 12 năm.
C. 11 năm.
D. 10 năm.
Câu 73. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. − < m < 0.
B. m ≥ 0.
C. m ≤ 0.
D. m > − .
4
4
Câu 74. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
C. aα+β = aα .aβ .
D. aα bα = (ab)α .
A. aαβ = (aα )β .
B. β = a β .
a
√
Câu 75. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
3
2
6
Câu 76. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
A. 1.
B. 2.
C. 2.
D. 10.
Câu 77. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −7.
C. Không tồn tại.
D. −5.
1
a
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
C. 4.
D. 1.
Câu 78. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =
A. 7.
B. 2.
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 2.
C. 1.
D. Vô số.
Câu 79. [4] Xét hàm số f (t) =
Câu 80. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 7%.
C. 0, 6%.
D. 0, 5%.
x+1
Câu 81. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. 3.
B. 1.
C. .
D. .
3
4
log7 16
Câu 82. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. −4.
B. 2.
C. −2.
D. 4.
Trang 6/10 Mã đề 1
Câu 83. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√
√
√
√ thẳng BD bằng
abc b2 + c2
c a2 + b2
a b2 + c2
b a2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 84. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 84cm3 .
C. 64cm3 .
D. 91cm3 .
Câu 85. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3 3
a3 3
a3 3
a3
A.
.
B.
.
C.
.
D.
.
8
12
4
4
√
Câu 86. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
C.
;3 .
D. (1; 2).
A. [3; 4).
B. 2; .
2
2
!
1
1
1
Câu 87. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. +∞.
B. .
C. 2.
D. .
2
2
Z 3
x
a
a
Câu 88. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = 16.
C. P = 4.
D. P = −2.
Câu 89. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 8 mặt.
C. 6 mặt.
D. 10 mặt.
Câu 90. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 5.
D. 3.
C. 2.
x
Câu 91. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
1
3
3
B. .
C.
.
D. 1.
A. .
2
2
2
1
Câu 92. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. 2.
C. 1.
D. −2.
Câu 93. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
A. 2.
B. .
C. 1.
2
1 − n2
Câu 94. [1] Tính lim 2
bằng?
2n + 1
1
A. .
B. 0.
2
C.
1
.
3
D.
ln 2
.
2
1
D. − .
2
Câu 95. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = (−2; 1).
C. D = [2; 1].
D. D = R \ {1; 2}.
Câu 96. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 10.
D. 8.
2
C. 6.
Trang 7/10 Mã đề 1
Câu 97. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
−1 − i 3
−1 + i 3
A. P =
.
B. P = 2.
C. P =
.
D. P = 2i.
2
2
Câu 98. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
Câu 99. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
.
B.
.
C. a 6.
.
A.
D.
2
3
6
x2 − 9
Câu 100. Tính lim
x→3 x − 3
A. −3.
B. 6.
C. +∞.
D. 3.
Câu 101. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
B. − 2 .
C. − .
A. − .
e
e
2e
Câu 102. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = ln x − 1.
C. y0 = 1 − ln x.
D. −e.
D. y0 = x + ln x.
d = 300 .
Câu 103. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.
√
3
√
3a 3
a3 3
3
3
A. V =
.
B. V = 3a 3.
.
C. V = 6a .
D. V =
2
2
Câu 104. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
24
12
36
√
Câu 105. Xác định phần ảo của số√phức z = ( 2 + 3i)2
√
A. 7.
B. −6 2.
C. −7.
D. 6 2.
Câu 106. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 210 triệu.
C. 220 triệu.
D. 212 triệu.
Câu 107.
Các khẳng định nào Z
sau đây là sai?
Z
A.
Z
C.
f (x)dx = F(x) + C ⇒
!0
f (x)dx = f (x).
f (t)dt = F(t) + C. B.
Câu 108. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
C. lim qn = 1 với |q| > 1.
Z
Z
D.
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Z
k f (x)dx = k
f (x)dx, k là hằng số.
1
B. lim √ = 0.
n
D. lim un = c (Với un = c là hằng số).
2
2
sin x
Câu 109. [3-c] Giá trị nhỏ nhất và giá
+ 2cos x √
lần lượt là
√ trị lớn nhất của hàm
√ số f (x) = 2
A. 2 và 3.
B. 2 và 2 2.
C. 2 và 3.
D. 2 2 và 3.
Trang 8/10 Mã đề 1
Câu 110.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
xα+1
1
A.
xα dx =
+ C, C là hằng số.
B.
dx = ln |x| + C, C là hằng số.
α+1
Z
Z x
C.
dx = x + C, C là hằng số.
0dx = C, C là hằng số.
D.
Câu 111. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 112. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Bốn cạnh.
C. Năm cạnh.
Câu 113. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 4.
2−n
bằng
Câu 114. Giá trị của giới hạn lim
n+1
A. 1.
B. −1.
C. 10.
D. 8.
C. 0.
D. 2.
Câu 115. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {5; 3}.
Câu 116. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) liên tục trên K.
D. Ba cạnh.
D. {3; 4}.
B. f (x) có giá trị lớn nhất trên K.
D. f (x) xác định trên K.
Câu 117. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 6 mặt.
D. 9 mặt.
x−1
Câu 118. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
AB có độ dài bằng
√
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng √
B. 2.
C. 6.
D. 2 2.
A. 2 3.
Câu 119. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.
B. 0.
C. 3.
D. 1.
Câu 120. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. R.
C. (−∞; 1).
D. (2; +∞).
ln x p 2
1
Câu 121. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
8
1
A. .
B. .
C. .
D. .
3
9
9
3
Câu 122. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim [ f (x) − g(x)] = a − b.
B. lim
= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) + g(x)] = a + b.
D. lim [ f (x)g(x)] = ab.
x→+∞
x→+∞
Trang 9/10 Mã đề 1
Câu 123. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 3.
C. 0.
D. 1.
Câu 124. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = −18.
C. y(−2) = 6.
D. y(−2) = 22.
d = 30◦ , biết S BC là tam giác đều
Câu 125. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
9
13
26
16
[ = 60◦ , S O
Câu 126. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ A đến (S BC) bằng
√
√
a 57
2a 57
a 57
A.
.
B.
.
C. a 57.
D.
.
17
19
19
Câu 127. Trong các khẳng định sau, khẳng định nào sai?
√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. Cả ba đáp án trên.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 128. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 129. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
23
13
5
B.
.
C. −
.
D.
.
A. − .
16
25
100
100
Câu 130. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.
C. Khối bát diện đều. D. Khối tứ diện đều.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2.
3.
D
4. A
5. A
6. A
7.
D
8. A
9.
B
10.
11.
B
12. A
13.
B
14.
D
15.
C
19.
21. A
23.
C
29.
D
C
31.
33.
18.
B
20.
B
22.
B
D
28.
B
30.
B
34. A
D
38. A
40. A
B
41.
D
42.
43.
C
44.
45.
C
46.
B
C
D
C
50. A
B
53.
D
B
52.
D
54.
D
56.
57.
B
58.
D
B
60.
D
C
62.
61. A
63.
67.
D
48.
49. A
65.
C
36. A
37.
59.
D
32.
35. A
55.
D
26. A
27.
51.
C
24.
C
25. A
47.
B
16.
17. A
39.
C
C
64.
D
C
66.
B
D
68.
1
D
C
69. A
C
72.
74.
B
70.
D
73.
D
75.
76. A
77.
78. A
79.
80.
B
82. A
B
C
B
81.
D
83.
D
84.
C
85. A
86.
C
87.
C
88.
C
89.
C
92.
D
93. A
94.
D
95. A
C
96.
97.
98.
B
99.
100.
B
101.
102. A
B
D
C
103. A
104.
D
108.
D
105.
C
106.
107.
B
109.
C
110. A
D
111.
D
112.
114.
D
91.
90. A
113. A
B
116.
C
C
115.
C
118. A
119. A
120. A
121.
C
122.
B
123.
C
124.
B
126.
B
128.
B
125.
B
127. A
129.
130.
C
2
C