Tải bản đầy đủ (.pdf) (12 trang)

Bài tập toán thpt 3 (341)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.87 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

9t
Câu 1. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 2.
C. 0.
D. 1.
2
1−n
Câu 2. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. 0.
B. .
C. − .
D. .
2


2
3
3
2
Câu 3. [2D1-3] Tìm giá trị của tham số m để f (x) = −x + 3x + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
D. − < m < 0.
A. m ≤ 0.
B. m ≥ 0.
C. m > − .
4
4
Câu 4. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 2.
C. 0, 4.
D. 0, 3.
Câu 5. Cho số phức z thỏa mãn |z +√3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
C. |z| = 17.
A. |z| = 10.
B. |z| = 17.

D. |z| =


10.


Câu 6. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Đường phân giác góc phần tư thứ nhất.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục thực.
Câu 7. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {4; 3}.

C. {5; 3}.

D. {3; 3}.

Câu 8. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x ) − √
2

A. −1.

B. 4.

C. 6.

3

Z

6
3x + 1

. Tính


1

f (x)dx.
0

D. 2.

Câu 9. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng (AB0C)
và (A0C 0 D) bằng




a 3
2a 3
a 3
A. a 3.
B.
.
C.
.
D.
.
3
2
2
Câu 10. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.

C. Khối bát diện đều. D. Khối 12 mặt đều.
Câu 11. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 12. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim [ f (x)g(x)] = ab.
B. lim
= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) + g(x)] = a + b.
D. lim [ f (x) − g(x)] = a − b.
x→+∞

x→+∞

Trang 1/10 Mã đề 1


Câu 13. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối


√ chóp S .ABCD là

3
3
a 3
a 3
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
48
24
48
16
Câu 14. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có hai.
C. Có một.
D. Khơng có.
Câu 15. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 5.

C. 8.


D. 4.

Câu 16. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (−∞; 2).

C. (0; 2).

D. (−∞; 0) và (2; +∞).

Câu 17. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 20.

C. 12.

D. 8.

Câu 18. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 212 triệu.
C. 220 triệu.
D. 210 triệu.
d = 60◦ . Đường chéo
Câu 19. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





3
3
3

2a
4a
a
6
6
6
A. a3 6.
B.
.
C.
.
D.
.
3
3
3
Câu 20. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. 2e4 .
C. −e2 .
D. −2e2 .
un

Câu 21. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. 0.
C. 1.
D. −∞.
Câu 22. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là

2a3 3
a3
a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
6
3
3
Câu 23. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A.
.
B. −2.

C. −4.
D. −7.
27
log 2x
Câu 24. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1
1 − 4 ln 2x
1 − 2 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 =
.
D. y0 = 3
.
3
3
x
2x ln 10
2x ln 10
x ln 10
1
Câu 25. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. −2.

C. −1.
D. 1.
Câu 26. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 2.

B. 3.

C. +∞.

D. 1.
Trang 2/10 Mã đề 1


Câu 27. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 6.
C. y(−2) = 2.
D. y(−2) = 22.
Câu 28. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. Cả ba câu trên đều sai.
2n + 1
Câu 29. Tìm giới hạn lim
n+1

A. 2.
B. 3.

C. 1.

D. 0.

Câu 30. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m

√ của hàm số. Khi đó tổng
B. 8 2.
C. 7 3.
D. 16.
A. 8 3.
Câu 31. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 10.

C. 6.

D. 8.

Câu 32. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a =

.
C. log2 a = − loga 2.
D. log2 a = loga 2.
log2 a
loga 2

Câu 33. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 63.
C. Vô số.
D. 62.
Câu 34. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 20.

C. 30.

Câu 35. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
C. V = S h.
A. V = 3S h.
B. V = S h.
2
3
Câu 36. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 12.
C. 30.


D. 12.
D. V = S h.
D. 8.

Câu 37. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
!
" đây?
!
"
5
5
A. [3; 4).
B. (1; 2).
C.
;3 .
D. 2; .
2
2
Câu 38. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

A. 5.
B. 5.
C. 25.


ab.




1
.
5
Câu 39. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim f (x) = f (a).
x→a

x→a

C. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

D.

x→a

D. f (x) có giới hạn hữu hạn khi x → a.

Câu 40. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 4.
C. 2.

D. −4.

Câu 41. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

A. 7 mặt.
B. 6 mặt.
C. 8 mặt.

D. 9 mặt.
Trang 3/10 Mã đề 1


Câu 42. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 22 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 20 triệu đồng.
Câu 43. Khối lập phương thuộc loại
A. {3; 4}.
B. {3; 3}.

C. {4; 3}.

D. {5; 3}.

Câu 44. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
3b + 3ac

.
B.
.
C.
.
D.
.
A.
c+2
c+2
c+3
c+1
Câu 45. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
.
B. a 6.
.
D.
.
A.
C.
3
2
6

x2 − 12x + 35
Câu 46. Tính lim
x→5
25 − 5x
2
2
B. −∞.
C. +∞.
D. − .
A. .
5
5
2−n
Câu 47. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 0.
C. 1.
D. 2.
Câu 48. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. 0.
C. e2016 .
D. 22016 .
Câu 49. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 50. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. Khối lập phương.

D. Khối bát diện đều.

Câu 51. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ S .ABCD là
√ phẳng vng góc với (ABCD). Thể tích khối chóp
3
3
3

a 3
a 2
a 3
A.
.
B.
.
C. a3 3.
D.
.
2
4
2

Câu 52. Tứ diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {3; 4}.
D. {5; 3}.
Câu 53. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều sai.

C. Chỉ có (II) đúng.

Câu 54. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 9 mặt.

D. Cả hai đều đúng.
D. 3 mặt.
Trang 4/10 Mã đề 1


Câu 55. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; −8).
C. A(−4; −8)(.
D. A(4; 8).
Câu 56. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn

[1; e]. Giá trị của T = M + m bằng
2
2
C. T = e + 3.
D. T = e + .
A. T = e + 1.
B. T = 4 + .
e
e
d = 30◦ , biết S BC là tam giác đều
Câu 57. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
13
16

26
Câu 58. Hàm số nào sau đây khơng có cực trị
x−2
A. y =
.
B. y = x4 − 2x + 1.
2x + 1

C. y = x3 − 3x.

1
D. y = x + .
x

Câu 59.! Dãy số nào sau đây có giới
!n hạn là 0?
n
4
5
.
B.
.
A.
3
e

!n
5
C. − .
3


!n
1
D.
.
3

Câu 60. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
π
Câu 61. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 2 3.
B. T = 4.
C. T = 2.
D. T = 3 3 + 1.
[ = 60◦ , S O
Câu 62. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ O đến (S BC) bằng

√ với mặt đáy và S O = a.


a 57
2a 57
a 57
.
B.
.
C. a 57.
D.
.
A.
19
17
19
!4x
!2−x
2
3
Câu 63. Tập các số x thỏa mãn


3 # 2
"
!
"
!
#
2
2
2
2

A. − ; +∞ .
B. −∞; .
C.
; +∞ .
D. −∞; .
3
3
5
5
Câu 64. Tính lim
A. +∞.

x→3

x2 − 9
x−3

B. −3.

C. 3.

D. 6.

Câu 65. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
Câu 66. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?

A. Khơng có.
B. Có vơ số.
C. Có hai.
D. Có một.
Câu 67. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 8 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp 4 lần.
Trang 5/10 Mã đề 1


Câu 68. [1] Biết log6
A. 108.



a = 2 thì log6 a bằng
B. 6.

C. 36.

D. 4.

Câu 69. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab

ab
.
B. √
.
C. √
.
D. 2
.
A. √
a + b2
a2 + b2
2 a2 + b2
a2 + b2

Câu 70. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 38
a 38
3a
3a 58
.
B.
.
C.
.
D.

.
A.
29
29
29
29
Câu 71.
√ [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 10.
C. 1.
D. 2.
Câu 72. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > 1.
C. m > −1.

D. m ≥ 0.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 73. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 5.
B. 4.
C. 3.
D. 2.
Câu 74. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A. 6 đỉnh, 9 cạnh, 5 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 75. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −1.
C. m = −3.
D. m = 0.
2
x
Câu 76. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = e, m = .
C. M = e, m = 0.
D. M = , m = 0.
e
e
Câu 77. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số mặt của khối chóp bằng 2n+1.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số cạnh của khối chóp bằng 2n.
Câu 78. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 5%.
C. 0, 6%.
D. 0, 8%.

Câu 79. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 3.

Câu 80. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 5.

C. 2.
C. 4.

D. 0.
D. 3.
Trang 6/10 Mã đề 1


Câu 81. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Hai mặt.
C. Bốn mặt.

D. Ba mặt.

Câu 82. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)

8a
5a
2a
a
B.
.
C.
.
D.
.
A. .
9
9
9
9
Câu 83. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 84. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.
C. 1.
0

0

D. 3.


0

Câu 85. [4] Cho lăng trụ ABC.A B C có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




14 3
20 3
B. 8 3.
C.
.
D.
.
A. 6 3.
3
3
Câu 86. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
.
A. a 6.
B. 2a 6.
C. a 3.

D.
2
Câu 87. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 3, 5 triệu đồng.
D. 70, 128 triệu đồng.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 88. [3-1214d] Cho hàm số y =
x+2
tam giác
√ có độ dài bằng
√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB
A. 2 3.
B. 6.
C. 2 2.
D. 2.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 89. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 2
a3 3
a3 3
A.

.
B.
.
C.
.
D. 2a2 2.
24
12
24
2
Câu 90. Tính
√4 mơ đun của số phức z√biết (1 + 2i)z = 3 + 4i.

A. |z| = 5.
B. |z| = 5.
C. |z| = 5.
D. |z| = 2 5.
Câu 91. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m ≥ .
C. m < .
D. m > .
4
4
4
4

x
Câu 92. Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1. √
1
3
3
A. .
B. .
C. 1.
D.
.
2
2
2
2
Câu 93. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = R.
C. D = (−2; 1).
D. D = R \ {1; 2}.
1 − xy
Câu 94. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 − 19
2 11 − 3
9 11 + 19

18 11 − 29
A. Pmin =
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
9
3
9
21
Trang 7/10 Mã đề 1


Câu 95. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. m ≥ 3.
C. −3 ≤ m ≤ 3.
D. −2 ≤ m ≤ 2.
x−2 x−1
x
x+1
Câu 96. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2

số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−3; +∞).
C. (−∞; −3).
D. [−3; +∞).
Câu 97. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Khơng có câu nào C. Câu (I) sai.
sai.

D. Câu (III) sai.

Câu 98. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 27 m.
C. 387 m.
D. 25 m.
Câu 99. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.

B. 6510 m.
C. 1134 m.
D. 2400 m.
Câu 100. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 101. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim+ f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

x→a

x→b


D. lim+ f (x) = f (a) và lim− f (x) = f (b).

Câu 102. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường



√ thẳng BD bằng
b a2 + c2
abc b2 + c2
a b2 + c2
c a2 + b2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 103. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 5}.


D. {3; 4}.

Câu 104. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 9 mặt.
C. 6 mặt.
D. 3 mặt.
Câu 105. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vuông góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
4
12
6
12

Trang 8/10 Mã đề 1


Câu 106. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
đề nào dưới đây đúng?
!
!
1
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số nghịch biến trên khoảng ; 1 .
3
! 3
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 107. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aα+β = aα .aβ .
B. β = a β .
C. aα bα = (ab)α .
D. aαβ = (aα )β .
a
Câu 108. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối



√ chóp S .ABMN là 3 √
3
2a 3
4a3 3
a3 3
5a 3
.
B.
.
C.
.
D.
.
A.
3
3
3
2
Câu 109. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 27 lần.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
B. 67.
C. 45.
D. 34.


Câu 110. Tìm m để hàm số y =
A. 26.

Câu 111. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. n3 lần.
D. 2n2 lần.
cos n + sin n
Câu 112. Tính lim
n2 + 1
A. −∞.
B. 1.
C. +∞.
D. 0.
Câu 113. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
5
9
23
.
B.
.
C. − .
D.
.
A. −

100
100
16
25
Câu 114. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối 20 mặt đều.

D. Khối tứ diện đều.

Câu 115. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 14.
C. ln 10.
D. ln 12.
Câu 116. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√mặt phẳng (AIC) có diện
√tích là
√ hình chóp S .ABCD với
2
2
2
2
11a
a 7
a 5

a 2
A.
.
B.
.
C.
.
D.
.
32
8
16
4

Câu 117. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là



πa3 6
πa3 3
πa3 3
πa3 3
.
B. V =
.
C. V =
.
D. V =

.
A. V =
6
2
3
6
1
Câu 118. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 4.
C. 3.
D. 1.
Trang 9/10 Mã đề 1


Câu 119. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích√khối chóp S .ABCD là √


a3 3
a3 3
2a3 3
.
B.
.
C.
.

D. a3 3.
A.
3
3
6
2n − 3
Câu 120. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. 0.
C. 1.
D. −∞.
Câu 121. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 4.

x−2
Câu 122. Tính lim
x→+∞ x + 3
2
B. 1.
A. − .
3


C. 1.

D. 3.

C. 2.

D. −3.


Câu 123. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6
a3 6
a3 2
a 6
.
B.
.
C.
.
D.
.
A.
6
18

36
6
5
Câu 124. Tính lim
n+3
A. 2.
B. 3.
C. 1.
D. 0.
Câu 125. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a3 6
a3 6
a 3
.
B.
.
C.
.
D.
.
A.
24
24

48
8

Câu 126. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. .
B. 3.
C. − .
D. −3.
3
3
Câu 127. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối lập phương.
D. Khối 12 mặt đều.
Câu 128. [1] Đạo hàm của làm số y = log x là
ln 10
1
1
A. y0 =
.
B. y0 = .
C. y0 =
.
x
x
x ln 10
Câu 129. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể
là:

A. 64cm3 .
B. 46cm3 .
C. 72cm3 .
x+1
Câu 130. Tính lim
bằng
x→−∞ 6x − 2
1
1
A. 1.
B. .
C. .
2
6

1
.
10 ln x
tích của khối lập phương đó
D.

D. 27cm3 .

D.

1
.
3

- - - - - - - - - - HẾT- - - - - - - - - -


Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.

B

3.

D

4.

C
D

5.

C

6.

C


C

8.

B

10.

B

11. A

12.

B

13. A

14. A

15. A

16.

7.
9.

B

17.


18.

C

19. A

D
B
C

20.

21.

B

22.

D

23.

B

24.

D

25.


B

26. A

27. A

28.

29. A

30.

31.

C

33.

32.

C

36. A

37.

C

38.

D

42.

D

48.

B

B

50.

C

51. A

52.

53.

C

55.

56.

C


57.

D
B
D
B

59.

58. A
60.

D

61.

62. A

D
B

63. A

64.
68.

C

46. A


47. A

66.

D

44. A

C

45.
49.

B

40. A

B

41.
43.

D

34.

D

35.
39.


C

D
C
D

65.

B

67.

B

69.
1

C


70. A

71.
C

72.

73.


74. A

77.

C

78. A
80.

C
C

79.

C

81.

C

87. A

88. A

89. A

90. A

91. A
C


93.

B

95.

B

96. A
98.

D

85. A

86. A

92.

D

83.

B

84.

94.


B

75. A

76.

82.

C

B

C

97.

B

99.

B

101.

100. A

D

102.


D

103.

104.

D

105.

B

107.

B

106.

B

108.

D

109.

110.

D


111.

112.

D

113. A

114. A
116.

115.

C

D
C
B

117.

B

118.

D

119.

C

B

120.

B

121.

122.

B

123.

B

125.

B

127.

B

124.

D

126. A
128.


C

130.

C

129.

2

D

D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×