Tải bản đầy đủ (.pdf) (12 trang)

Bài tập toán thpt 3 (713)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.13 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1


Câu 1. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là √
3

a 3
a3 3
a3
A.
.
B.
.
C. a3 3.
D.
.
12
3
4
Câu 2. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc của
0
A0 lên


√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và BC
a 3
. Khi đó thể tích khối lăng trụ là

4 √



a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
24
36
12
6
2n + 1
Câu 3. Tìm giới hạn lim
n+1
A. 1.
B. 0.
C. 2.

D. 3.
Câu 4. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
6
18
15
9
p
ln x
1
Câu 5. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
8
1
B. .
C. .
D. .

A. .
3
9
3
9
Câu 6. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 7. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(4; 8).
C. A(−4; −8)(.
D. A(−4; 8).
Câu 8. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
A. 40a3 .
B.
.
C. 20a3 .
D. 10a3 .
3
tan x + m
Câu 9. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1

 π
0; .
4
A. [0; +∞).
B. (1; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (−∞; −1) ∪ (1; +∞).
1
Câu 10. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. − .
B. −3.
C. .
D. 3.
3
3
Câu 11. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. −1.
C. 1.
D. 6.
n−1
Câu 12. Tính lim 2
n +2
A. 0.
B. 2.
C. 3.
D. 1.

Trang 1/10 Mã đề 1


Câu 13. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
B. .
C. 6.
D. 9.
A. .
2
2
1
Câu 14. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. −1.
C. −2.
D. 2.
Câu 15. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
Câu 16. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 8.


C. 6.

D. 4.

Câu 17. Giá trị của lim (3x − 2x + 1)
x→1
A. 2.
B. 1.

C. 3.

D. +∞.

2

Câu 18. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
B. 68.
C.
.
D. 5.
A. 34.
17
 π
x

Câu 19. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2


2 π4
3 π6
1 π3
B. 1.
C.
e .
D.
e .
A. e .
2
2
2
2
Câu 20. Tính
√ mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √
√4
A. |z| = 5.
B. |z| = 5.
C. |z| = 2 5.
D. |z| = 5.
Câu 21. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −9.
C. −15.
D. −5.

Câu 22. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 23.
C. 22.
D. 21.
Câu 23. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. Không tồn tại.
C. 9.

D. 13.


Câu 24. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


3
πa 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.

C. V =
.
D. V =
.
3
2
6
6
Câu 25. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 30.
C. 12.
D. 10.
Câu 26. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + 3.
C. T = e + 1.
D. T = e + .
e
e
3
2
Câu 27. Cho hàm số y = −x + 3x − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).

Trang 2/10 Mã đề 1


Câu 28. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 12.

C. 30.

Câu 29. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
C.
.
A. 2.
B. .
2
2
Câu 30. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 31. Cho hàm số y = |3 cos x − 4 sin x + 8| với
nhỏ nhất của hàm số. Khi đó tổng
√M + m
A. 16.
B. 7 3.
3
x −1

Câu 32. Tính lim
x→1 x − 1
A. −∞.
B. 3.
!4x
!2−x
3
2


Câu 33. Tập các số x thỏa mãn
3 # 2
#
2
2
B. −∞; .
A. −∞; .
3
5

D. 8.
D. 1.

x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị

C. 8 3.


D. 8 2.


C. +∞.

D. 0.

"

!
2
C.
; +∞ .
5

"

!
2
D. − ; +∞ .
3

Câu 34. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m ≤ 3.
D. m < 3.
Câu 35. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD



a3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 .
3
3
9
Câu 36. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 1587 m.
C. 25 m.
D. 27 m.
Câu 37. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
C. lim qn = 0 (|q| > 1).

1
= 0.

nk
D. lim un = c (un = c là hằng số).

B. lim

Câu 38. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. .
B. − .
C. −2.
2
2

D. 2.


Câu 39. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


a3 6
a 2
a3 6
a3 6
A.
.
B.

.
C.
.
D.
.
36
6
6
18
Câu 40. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A.
.
B. 27.
C. 12.
D. 18.
2
Trang 3/10 Mã đề 1


!2x−1
!2−x
3
3
Câu 41. Tập các số x thỏa mãn


5
5

A. (−∞; 1].
B. [3; +∞).
C. (+∞; −∞).
D. [1; +∞).
1
Câu 42. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. (−∞; −2] ∪ [−1; +∞). C. −2 < m < −1.
D. −2 ≤ m ≤ −1.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 43. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−∞; −3).
C. [−3; +∞).
D. (−3; +∞).
Câu 44. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?

Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 220 triệu.
C. 212 triệu.
D. 216 triệu.
Câu 45. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
D.
A.
.
B.
.
C. a 6.
.
3
6
2
Câu 46. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a

x→b
x→b
C. lim+ f (x) = f (a) và lim+ f (x) = f (b).
D. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a

x→a

x→b

x→b

Câu 47. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 0.

C. 2.

D. 3.

Câu 48. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
1
ab

.
B. 2
.
C. √
.
D. √
.
A. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
d = 60◦ . Đường chéo
Câu 49. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
4a3 6
2a3 6
3
A.
.
B. a 6.
C.
.

D.
.
3
3
3
cos n + sin n
Câu 50. Tính lim
n2 + 1
A. 0.
B. −∞.
C. +∞.
D. 1.
Câu 51. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 72.
C. 7, 2.

D. 0, 8.
Trang 4/10 Mã đề 1


Câu 52.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
dx = log |u(x)| + C.
A.
u(x)
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.

C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 53. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là



a3 3
2a3 3
4a3 3
5a3 3
A.
.
B.
.
C.
.
D.
.
2
3
3
3
d = 30◦ , biết S BC là tam giác đều
Câu 54. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√

a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
13
9
16
26
Câu 55. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là


a3 3
a3 3
2a3 3
A.
.
B.
.
C.
.

D. a3 3.
3
6
3
Câu 56. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều. D. Khối lập phương.
Câu 57. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,

√ N, P bằng


14 3
20 3
.
B. 6 3.
.
C. 8 3.
D.
A.
3
3
Câu 58. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 2020.
C. log2 13.
D. 13.

Câu 59. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. R.
C. (2; +∞).

D. (−∞; 1).

Câu 60. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

D. Khối bát diện đều.

C. Khối lập phương.

Câu 61. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. − < m < 0.
B. m ≥ 0.
C. m > − .
D. m ≤ 0.
4
4
Câu 62. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Một mặt.
C. Ba mặt.
D. Hai mặt.

Câu 63. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = R \ {1; 2}.
C. D = (−2; 1).

D. D = [2; 1].

Câu 64. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 10.

D. 8.

2

C. 12.

Câu 65. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 6.
B.
.
C. a 3.
D. 2a 6.
2

Trang 5/10 Mã đề 1


x+1
Câu 66. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. 1.
D. .
3
2
6
Câu 67. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√

a3
a3
2a3 3
4a3 3
A.
.
B.
.
C.
.

D.
.
3
6
3
3
Câu 68. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = −2.
C. m = 0.
D. m = −1.
Câu 69. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
2n + 1
Câu 70. Tính giới hạn lim
3n + 2
2
3
1
A. 0.
B. .
C. .
D. .
3
2
2
Câu 71. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?

α

A. aα+β = aα .aβ .
B. aα bα = (ab)α .
C. aαβ = (aα )β .
D. β = a β .
a
−2x2
Câu 72. [2-c] Giá trị lớn nhất của hàm số y = xe
trên đoạn [1; 2] là
1
2
1
1
A. 2 .
B. 3 .
C. 3 .
D. √ .
e
e
2e
2 e
Câu 73. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3
a3 5
a3 15
.

B.
.
C.
.
D.
.
A.
25
5
3
25
Câu 74. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 30.
C. 12.
D. 8.
log 2x

Câu 75. [1229d] Đạo hàm của hàm số y =
x2
1 − 4 ln 2x
1 − 2 log 2x
1 − 2 ln 2x
1
A. y0 =
.
B. y0 =
.
C. y0 = 3
.

D. y0 = 3
.
3
3
2x ln 10
x
x ln 10
2x ln 10
x−3 x−2 x−1
x
Câu 76. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. (2; +∞).
C. (−∞; 2].
D. [2; +∞).
4x + 1
Câu 77. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. −1.

C. 2.
D. 4.
Câu 78. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. Cả ba đáp án trên.
Câu 79.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
4
12


a3 2
C.
.
6


a3 2
D.

.
2
Trang 6/10 Mã đề 1


Câu 80. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Ba mặt.
C. Năm mặt.

D. Bốn mặt.

Câu 81.
√ [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
A. 3.
B. 5.
C. 2.
D. 1.
Câu 82.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
B. 2.
C. 1.
D. 10.
A. 2.
Câu 83. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m = 0.
C. m , 0.


D. m < 0.

Câu 84. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) liên tục trên K.

B. f (x) có giá trị lớn nhất trên K.
D. f (x) có giá trị nhỏ nhất trên K.

Câu 85.! Dãy số nào sau đây có giới! hạn là 0?
n
n
5
1
.
B. − .
A.
3
3

!n
5
C.
.
3

!n
4
D.
.

e

Câu 86. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số đồng biến trên khoảng ; 1 .
3
3
C. Hàm số nghịch biến trên khoảng (1; +∞).

!
1
D. Hàm số nghịch biến trên khoảng −∞; .
3

Câu 87. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là


3
3

15
a
6
a3 5
a
.

B. a3 6.
.
D.
.
A.
C.
3
3
3

Câu 88. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 36.
C. 4.
D. 108.
Câu 89. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
1
C. lim √ = 0.
n

B. lim qn = 1 với |q| > 1.
D. lim un = c (Với un = c là hằng số).

Câu 90. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.





5 13
B. 2.
C.
A. 2 13.
.
D. 26.
13
x x
0
Câu 91. [2] Cho hàm số f (x) = 2 .5 . Giá trị của f (0) bằng
1
A. f 0 (0) = 10.
B. f 0 (0) = 1.
C. f 0 (0) =
.
D. f 0 (0) = ln 10.
ln 10
Câu 92. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 17 tháng.
C. 15 tháng.
D. 18 tháng.
x−2
Câu 93. Tính lim
x→+∞ x + 3

2
A. − .
B. 1.
C. −3.
D. 2.
3
Trang 7/10 Mã đề 1


Câu 94. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
B. m = ±1.
C. m = ±3.
D. m = ± 2.
A. m = ± 3.
2x + 1
Câu 95. Tính giới hạn lim
x→+∞ x + 1
1
C. 1.
D. 2.
A. −1.
B. .
2
Câu 96. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
B. 5.
C.
.
D. 7.

A. .
2
2
Câu 97. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 5.


Câu 98. [12215d] Tìm m để phương trình 4 x+
9
3
A. 0 ≤ m ≤ .
B. 0 < m ≤ .
4
4

1−x2

Câu 99. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. 4.

D. 3.


− 3m + 4 = 0 có nghiệm
3
C. 0 ≤ m ≤ .

D. m ≥ 0.
4

− 4.2 x+

1−x2

C. Khối 12 mặt đều.

D. Khối lập phương.

Câu 100. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số cạnh của khối chóp bằng 2n.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 101. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3
a3 3
a3 3
3
A.
.
B.
.
C. a .
D.

.
3
2
6
Câu 102. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục ảo.
D. Trục thực.
Câu 103. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Không thay đổi.
B. Tăng lên (n − 1) lần. C. Giảm đi n lần.
D. Tăng lên n lần.
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
a 2
2a
a
A. .
B.
.
C.
.
D. .

4
3
3
3
Câu 104. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 105. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 22 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 20 triệu đồng.
Trang 8/10 Mã đề 1


x2 − 12x + 35
25 − 5x
2
B. .
C. −∞.
D. +∞.
5
1 − n2
Câu 107. [1] Tính lim 2
bằng?
2n + 1
1

1
1
A. 0.
B. − .
C. .
D. .
2
3
2
[ = 60◦ , S O
Câu 108. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ với mặt đáy và S O = a. Khoảng cách từ O đến (S√BC) bằng

2a 57
a 57
a 57
.
B. a 57.
C.
.
D.
.
A.
17
19
19
x2 − 5x + 6
Câu 109. Tính giới hạn lim

x→2
x−2
A. 1.
B. 5.
C. −1.
D. 0.
Câu 106. Tính lim
x→5
2
A. − .
5

Câu 110. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều sai.

C. Cả hai đều đúng.

Câu 111. [3] Biết rằng giá trị lớn nhất của hàm số y =
các số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 135.

D. Chỉ có (II) đúng.

m
ln2 x

trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e

C. S = 22.

D. S = 32.

Câu 112. Cho z √
là nghiệm của phương trình x + x + 1 = 0. Tính P √
= z + 2z − z
−1 − i 3
−1 + i 3
A. P =
.
B. P = 2.
C. P =
.
D. P = 2i.
2
2
Câu 113. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 3.
C. 4.
D. 5.
2

Câu 114. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.

B. −4.
C. 4.

4

3

D. −2.

Câu 115. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z −√2 − 2i|. Tính |z|.

A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
Câu 116. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. [−1; 2).
C. (−∞; +∞).

D. [1; 2].

Câu 117.
[1233d-2] MệnhZđề nào sau đây
Z
Z sai?

[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z

B.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.

A.

Z

Câu 118. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (0; −2).
C. (2; 2).

D. (1; −3).
Trang 9/10 Mã đề 1


Câu 119. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1

B. − .
C. − 2 .
D. −e.
A. − .
e
2e
e
Câu 120. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 3.

C. 2.
D. 4.
a
1
Câu 121. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 4.
B. 7.
C. 1.
D. 2.
2mx + 1
1
Câu 122. Giá trị lớn nhất của hàm số y =

trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. 1.
C. −2.
D. 0.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 123. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 3.
B. 4.
C. 5.
D. 2.
!
!
!
x
1
2
2016
4
. Tính tổng T = f
Câu 124. [3] Cho hàm số f (x) = x
+f
+ ··· + f

4 +2
2017
2017
2017
2016
A. T = 2017.
B. T = 1008.
C. T = 2016.
D. T =
.
2017
Câu 125. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp đơi.
Câu 126. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A.
.
B. −7.
C. −2.
D. −4.
27
log2 240 log2 15
Câu 127. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2

A. −8.
B. 4.
C. 1.
D. 3.
!
1
1
1
Câu 128. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 2.
B. .
C. 0.
D. 1.
2
3

Câu 129. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e2 .
C. e.
D. e5 .
9t
Câu 130. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
9 + m2

cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 1.
C. 0.
D. Vô số.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

3.

5.

C

6. A
C

8.

B


9.

B

11.

12. A

13.

14.

C

15.

16.

C

17. A

18.

C

19.

20.


D

C
C

25.
B

27.
C

C
B

29. A

30.

B

31. A

32.

B

33.

34. A


D

35. A

36.

D

38.

37.

C

D
D

D

41.

42.

D

43. A

44.

45.


C

46. A

47.

48. A

49.

50. A

51. A

52. A

53. A

54. A

55. A
57.

B

58.

C


59. A

60.

C

61.

62. A

C

39.

40.

B
C
B

B
C

63. A

64.

65. A

C


66.
68.

B

23. A

C

28.

56.

D

21. A

24. A
26.

D

7.

10. A

22.

C


2.

D

67.

B

69.
1

D
B


70.

71.

B

72. A

73. A

74. A

75.


76.

D
C

77.

D

D

78.

B

79.

80.

B

81.

C
C

82.

C


83.

84.

C

85. A
87.

86. A
88.

C

89.

90.

C

91.

92. A

93.
D

94.
C
B


102. A

D
B
D
C

99.

B

101.

B

103.

104.

C
B

B

107.

B

D


109.

110.

D

111.

B

C
D

113.

114.

D

116.

C

105.

108.
112.

B


97.

98.

106.

D

95.

96. A
100.

B

C

115.

C

D

117.

B

118.


B

119.

B

120.

B

121.

B

123.

B

125.

B

122.
124.
126.
128.

D
B


127. A

C

129.

D

130. A

2

D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×