Tải bản đầy đủ (.pdf) (12 trang)

Bài tập toán thpt 3 (767)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.46 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 135.

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
C. S = 32.

D. S = 22.

Câu 2. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 4.



C. 1.

D. 3.

Câu 3. Tính diện tích hình phẳng giới hạn bởi các đường√y = xe x , y = 0, x = 1.
1
3
3
A. .
B. .
C.
.
D. 1.
2
2
2
Câu 4. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 5.

B. 0.

1
Câu 5. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. −1.
Câu 6. [1] Đạo hàm của hàm số y = 2 x là

1
A. y0 = 2 x . ln 2.
B. y0 =
.
ln 2
Câu 7. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =
A. 2.

B. 7.

C. 7.

D. 9.

C. 1.

D. −2.

C. y0 = 2 x . ln x.

D. y0 =

1
2 x . ln

x

.

1

a
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
C. 1.
D. 4.

Câu 8. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối bát diện đều.
C. Khối lăng trụ tam giác.
D. Khối tứ diện.
Câu 9. Cho hình √chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3

a 6
a 15
a3 5
A.
.
B.
.
C.
.
D. a3 6.
3

3
3
1
Câu 10. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. − .
B. .
C. 3.
D. −3.
3
3
log 2x
Câu 11. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 4 ln 2x
1 − 2 log 2x
1
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.

3
3
x ln 10
2x ln 10
x
2x ln 10
Trang 1/10 Mã đề 1


Câu 12. Tính lim
x→3

A. 6.

x2 − 9
x−3

B. +∞.

C. 3.

D. −3.

Câu 13. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số đồng biến trên khoảng ; 1 .
3

3
!
1
D. Hàm số nghịch biến trên khoảng −∞; .
3

C. Hàm số nghịch biến trên khoảng (1; +∞).

Câu 14. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 12 năm.
D. 13 năm.
3

Câu 15. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e.
C. e5 .
!
1
1
1
+
+ ··· +
Câu 16. Tính lim
1.2 2.3

n(n + 1)
3
A. 2.
B. 1.
C. .
2

D. e2 .

D. 0.

Câu 17. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng

1
.
D. f 0 (0) = 10.
ln 10
!
3n + 2
2
Câu 18. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 4.
C. 3.
D. 5.
A. f 0 (0) = 1.


B. f 0 (0) = ln 10.

C. f 0 (0) =

Câu 19. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
A. 20a3 .
B. 10a3 .
C.
.
D. 40a3 .
3
Câu 20. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là

a3
a3
4a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.

3
6
3
3
Câu 21. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = 1 + ln x.
C. y0 = x + ln x.
D. y0 = ln x − 1.
Câu 22. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {0}.

C. D = R \ {1}.

D. D = (0; +∞).

Câu 23. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B.
.
C. a 6.

D.
.
2
3
6
x+3
Câu 24. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 2.
C. 1.
D. 3.
Trang 2/10 Mã đề 1


Câu 25. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 12 cạnh.

C. 11 cạnh.

D. 9 cạnh.

Câu 26. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un


!
un
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
v
n
!
un
= a , 0 và lim vn = ±∞ thì lim
= 0.
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= a > 0 và lim vn = 0 thì lim
= +∞.
vn

Câu 27. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. Khối 20 mặt đều.

Câu 28. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 29. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.

B. 1.
C. 6.

D. 2.

Câu 30. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 3.
C. 0.
D. −6.
Câu 31. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 18 tháng.
C. 17 tháng.
D. 15 tháng.
Câu 32. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ S .ABCD là
√ phẳng vng góc với (ABCD). Thể tích khối chóp
3
3
3

a 3
a 2
a 3
.

B.
.
C. a3 3.
D.
.
A.
2
4
2
Câu 33. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Bốn mặt.
C. Một mặt.
Câu 34. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 20.

D. Ba mặt.

C. 30.

D. 12.
tan x + m
Câu 35. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (1; +∞).

C. (−∞; 0] ∪ (1; +∞). D. [0; +∞).

Câu 36. √
Thể tích của khối lập phương có cạnh bằng a 2


2a3 2
A.
.
B. V = a3 2.
C. 2a3 2.
D. V = 2a3 .
3
Câu 37. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục thực.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục ảo.
Trang 3/10 Mã đề 1


Câu 38.

[12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [−1; 0].

B. m ∈ [0; 2].

Câu 39.
√ Tìm giá trị lớn nhất của hàm số y =
A. 2 3.
B. 3.



C. m ∈ [0; 1].

x + 3 + 6√− x
C. 3 2.

q
x+ log23 x + 1+4m−1 = 0

D. m ∈ [0; 4].
D. 2 +


3.

Câu 40. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng




20 3
14 3
A.
.
B.
.
C. 6 3.
D. 8 3.
3
3
Câu 41. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
A. 27.
B. 18.
C. 12.
D.
2
1 + 2 + ··· + n
Câu 42. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 1.
B. Dãy số un khơng có giới hạn khi n → +∞.
1
C. lim un = 0.
D. lim un = .
2
Câu 43. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một

nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) trên khoảng (a; b).
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 44. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (−1; 1).
C. (−∞; 1).

D. (1; +∞).
2

x
Câu 45. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = 0.
C. M = e, m = 1.
D. M = e, m = .
e
e
Câu 46. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 0.
C. 13.
D. 9.
Câu 47. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực

x≥1
A. m > 3.
B. m ≥ 3.
C. m ≤ 3.
D. m < 3.
Câu 48. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 5 mặt.
C. 6 mặt.
D. 3 mặt.

Câu 49. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 2
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.

6
36
18
6
Câu 50. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 5.
B. 34.
C. 68.
D.
.
17
Trang 4/10 Mã đề 1


Câu 51. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim
= .
B. lim [ f (x) − g(x)] = a − b.
x→+∞ g(x)
x→+∞
b

C. lim [ f (x) + g(x)] = a + b.
D. lim [ f (x)g(x)] = ab.
x→+∞

x−3
bằng?
Câu 52. [1] Tính lim
x→3 x + 3
A. +∞.
B. 1.

x→+∞

C. −∞.

D. 0.

Câu 53. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có một.
C. Có hai.
D. Có vơ số.
Câu 54. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. V = 4π.
C. 32π.
D. 8π.
Câu 55. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng

A. 2.
B. 4.
C. −2.

D. −4.

Câu 56. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 2.

D. 3.

C. 4.

1
Câu 57. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (−∞; 3).
C. (−∞; 1) và (3; +∞). D. (1; 3).
d = 60◦ . Đường chéo
Câu 58. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0






a3 6
4a3 6
2a3 6
.
B.
.
C.
.
D. a3 6.
A.
3
3
3
Câu 59. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 70, 128 triệu đồng. C. 3, 5 triệu đồng.
D. 50, 7 triệu đồng.
x
9
Câu 60. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 1.
B. −1.
C. .
D. 2.

2
Câu 61. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {5; 3}.
D. {3; 5}.

Câu 62. √Xác định phần ảo của số phức z = ( 2 + 3i)2 √
A. −6 2.
B. 7.
C. 6 2.
D. −7.
2n + 1
Câu 63. Tính giới hạn lim
3n + 2
2
1
3
A. .
B. 0.
C. .
D. .
3
2
2
[ = 60◦ , S O
Câu 64. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng



a 57
a 57
2a 57
A. a 57.
B.
.
C.
.
D.
.
17
19
19
Câu 65. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −7.
C. −3.
D. Không tồn tại.
Trang 5/10 Mã đề 1


Câu 66. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. Vô số.
C. 3.
D. 2.
Câu 67.

Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
Z
C.

( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.

k f (x)dx = f

B.
Z
D.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

Câu 68. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. [−1; 2).
C. [1; 2].


D. (−∞; +∞).

Câu 69. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có một.
C. Khơng có.
D. Có hai.
Câu 70. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 12.

C. 20.

D. 10.

Câu 71. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B. a3 .
C.
.
D.
.
A.
6

12
24
Câu 72. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).

Hai mặt bên
√ (S BC) và (S AD) cùng
√ hợp với đáy một góc 303 .√Thể tích khối chóp S .ABCD
√ là
3
3
3
8a 3
a 3
8a 3
4a 3
A.
.
B.
.
C.
.
D.
.
9
9
3
9
Câu 73.
bằng 1 là:
√ Thể tích của khối lăng trụ tam giác đều có cạnh √

3
3
3
A.
.
B. .
C.
.
4
4
2
Câu 74. Khối lập phương thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {5; 3}.


3
D.
.
12
D. {4; 3}.

Câu 75. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
1 − 2n

Câu 76. [1] Tính lim
bằng?
3n + 1
2
1
2
A. .
B. 1.
C. .
D. − .
3
3
3
Câu 77. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 2.
C. 0, 3.
D. 0, 5.
Câu 78. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
c a2 + b2
b a2 + c2
abc b2 + c2
a b2 + c2

A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Trang 6/10 Mã đề 1


Câu 79. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m ≥ 0.
C. m > −1.

D. m > 1.

Câu 80. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều sai.

C. Cả hai đều đúng.


D. Chỉ có (I) đúng.

Câu 81. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 24 m.
C. 8 m.
D. 12 m.
Câu 82. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
B. −∞; .
C. − ; +∞ .
A. −∞; − .
2
2
2

!
1
D.
; +∞ .
2

Câu 83. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).

B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số đồng biến trên khoảng (1; 2).
Z 1
Câu 84. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
1
B. .
C. 0.
A. .
2
4
Câu 85. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Hai mặt.
C. Ba mặt.

D. 1.
D. Bốn mặt.

Câu 86. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m < .

C. m > .
D. m ≥ .
4
4
4
4
mx − 4
Câu 87. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 34.
B. 67.
C. 26.
D. 45.
Câu 88. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 5
a3 15
a3 15
a3
A.
.
B.
.
C.
.
D.
.
25

25
5
3
Câu 89. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 2.
C. 24.
D. 4.
2mx + 1
1
Câu 90. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. −5.
C. −2.
D. 0.
Câu 91. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
Trang 7/10 Mã đề 1


A. Khơng có câu nào B. Câu (III) sai.
C. Câu (I) sai.
sai.
Câu 92. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?

A. (0; 2).
B. (−∞; 1).
C. R.

D. Câu (II) sai.

D. (2; +∞).

0 0 0 0
0
Câu 93.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
2
7
3
2
Câu 94. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =

xy + x + 2y + 17
A. −12.
B. −9.
C. −15.
D. −5.


Câu 95. Phần thực√và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt l √

A. Phần thực là √2 − 1, phần ảo là −√ 3.
B. Phần thực là 1√− 2, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 2, phần ảo là 1 − 3.

Câu 96. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. −3 ≤ m ≤ 3.
C. m ≥ 3.
D. m ≤ 3.
Câu 97. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. Cả ba mệnh đề.


C. (I) và (III).

D. (I) và (II).

Câu 98. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 1.
C. 0.
D. e2016 .
Câu 99. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là

a3 3
a3
a3 3
3
.
C.
.
D.
.
A. a .
B.
3
3
9
Câu 100. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.

B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 101. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 12.

C. 8.

Câu 102. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −1.
C. m = −3.

D. 10.
D. m = −2.

Câu 103. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trang 8/10 Mã đề 1



Trong hai câu trên
A. Chỉ có (I) đúng.

B. Cả hai câu trên đúng. C. Cả hai câu trên sai.

D. Chỉ có (II) đúng.

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.

Câu 104. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey + 1.

Câu 105. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Khơng thay đổi.
B. Tăng lên (n − 1) lần. C. Giảm đi n lần.
D. Tăng lên n lần.
Câu 106. Hàm số nào sau đây không có cực trị
1
A. y = x4 − 2x + 1.
B. y = x + .
C. y = x3 − 3x.
x

Câu 107. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {3; 3}.

D. y =

x−2
.
2x + 1

D. {4; 3}.

Câu 108. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
.
A. 2.
B. 26.
C. 2 13.
D.
13
x+2
Câu 109. Tính lim
bằng?
x→2

x
A. 0.
B. 1.
C. 3.
D. 2.
Câu 110. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện
√tích là
2
2
2
2
a 2
a 5
a 7
11a
.
B.
.
C.
.
D.
.
A.
32
4
16

8
Câu 111. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (1; 3; 2).
C. (2; 4; 4).
D. (2; 4; 3).
Câu 112. Giá trị của lim (3x2 − 2x + 1)
A. +∞.

x→1

B. 3.

C. 2.

D. 1.

1
5

Câu 113. [2] Tập xác định của hàm số y = (x − 1) là
A. D = R.
B. D = R \ {1}.
C. D = (−∞; 1).

D. D = (1; +∞).

Câu 114. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi

cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.016.000.
D. 102.423.000.
x+2
Câu 115. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. Vô số.
B. 3.
C. 1.
D. 2.
√3
4
Câu 116. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
5
2
7
A. a 8 .
B. a 3 .
C. a 3 .
D. a 3 .
4x + 1
Câu 117. [1] Tính lim
bằng?
x→−∞ x + 1

A. −4.
B. 4.
C. 2.
D. −1.
Trang 9/10 Mã đề 1


Câu 118.
√ các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
√ [4-1245d] Trong tất cả
B. 2.
C. 2.
D. 1.
A. 10.

x2 + 3x + 5
Câu 119. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 1.
B. 0.
C. .
D. − .
4
4
Câu 120. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2

2
B. T = e + 3.
C. T = e + 1.
D. T = 4 + .
A. T = e + .
e
e
0 0 0
Câu 121. [3-1122h] Cho hình lăng trụ ABC.A B C có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.

D.
.
36
6
24
12
Câu 122.
định nào sau đây là sai?
!
Z Các khẳng
Z
Z
0

f (x)dx = f (x).
Z
Z
C.
k f (x)dx = k
f (x)dx, k là hằng số.

A.

f (x)dx = F(x) +C ⇒

B.
Z
D.

f (x)dx = F(x) + C ⇒


Câu 123. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Hai cạnh.
C. Ba cạnh.

f (u)dx = F(u) +C.

Z

f (t)dt = F(t) + C.

D. Năm cạnh.

Câu 124. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 24.
B. 15, 36.
C. 3, 55.
D. 20.
Câu 125. [4-1246d] Trong tất cả
√ các số phức z thỏa mãn√|z − i| = 1. Tìm giá trị lớn nhất của |z|
C. 5.
D. 2.
A. 1.
B. 3.
Câu 126. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).

C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 127. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −21.
C. P = −10.
D. P = 10.
Câu 128. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. 72.
C. −7, 2.

D. 7, 2.

Câu 129. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 12.

D. 30.

C. 8.

Câu 130. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
A. 3.
B. − .
C. −3.
3

D.


1
.
3

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

2.

D
D

3.

D

4.

5.


D

6. A

7.

8.

B

9. A

10. A

11. A

12. A

13. A

14.
C

15.
17.

B

C


16.

B

18.

B

20.

19. A
21.

D

22. A

B

23.

D

25. A
27.

D

29.


D

24.

D

26.

D

28.

D

30. A

C

31. A

32. A

33.

B

34.

C


35.

B

36.

C

37.

C

38. A

39.

C

40.

41.

42.

B

43.

D


B
B

B

46.

47.

B

48. A
C

51. A

D

44.

45.
49.

C

50.

D

52.


D

53.

C

55.

C

56.

C

57.

C

58.

D

59. A
61.

60. A
62.

C


63. A

64.

C

65.

66.

D

67.

68.

D

69. A
1

D
D
C


70.

71.


B

72. A

C

73. A

74.

D

75. A

76.

D

77.

C

78.

D

79.

C


80. A

81. A

82.

83.

C

84. A

85.

C

86. A

87. A

88.

C

B

89. A
D


90.

91. A

92. A

93.

94. A

95. A

96.

97.

B

98.

C

C

101. A

102.

D


104.

103.

D

107. A

108.

D

109.

110.

D

111. A

112.

C

114. A
116.

C

118.


B

105.

C

106.

115.

D
D
D

121.

122.

B

123.

124.

B

125.
127.
129.


C
D

2

B

119.

B

126. A

D
D

117.
D

C

113.

120.

130.

D


99.

100. A

128.

C

C
D
B
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×