Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thptqg 2 (160)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (156.57 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Thể tích của khối lăng trụ
√ tam giác đều có cạnh bằng
√ 1 là:
3
3
3
A. .
B.
.
C.
.
4
2
12


3
D.
.
4

Câu 2. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là


A. 2.
B. 1.
C. 3.
D. Vô nghiệm.
Câu 3. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 20.

C. 30.

D. 12.

Câu 4. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
13
23
5
A. − .
B.
.
C.
.
D. −
.
16
25
100
100
Câu 5. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là

A. (4; 6, 5].
B. (4; +∞).
C. (−∞; 6, 5).

D. [6, 5; +∞).

Câu 6. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.

A. 9.
B. 8.
C. 27.
D. 3 3.
Câu 7. [1] Đạo hàm của hàm số y = 2 x là
A. y0 = 2 x . ln 2.

B. y0 = 2 x . ln x.

C. y0 =

1
.
2 x . ln x

D. y0 =

1
.
ln 2

Câu 8. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?

A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Câu 9. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Khối lập phương.
D. Khối 12 mặt đều.

Câu 10. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 62.
C. 64.
D. 63.
Câu 11. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 12.
!4x
!2−x
2
3
Câu 12. Tập các số x thỏa mãn


#
" 3 ! 2
2

2
A. −∞; .
B.
; +∞ .
5
5
Câu 13. Giá trị lớn nhất của hàm số y =
A. 1.

B. −2.

C. 20.

D. 8.

"
!
2
C. − ; +∞ .
3

#
2
D. −∞; .
3

2mx + 1
1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x

3
C. 0.
D. −5.

Câu 14. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Bốn mặt.
C. Ba mặt.

D. Hai mặt.
Trang 1/10 Mã đề 1


Câu 15. [1] Tính lim
A. 1.

1 − 2n
bằng?
3n + 1
1
B. .
3

C.

2
.
3

2

D. − .
3
2

2

Câu 16. [3-c]
và giá trị lớn nhất của hàm √
số f (x) = 2sin x + 2cos x lần lượt là
√ Giá trị nhỏ nhất √
A. 2 và 2 2.
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 3.
1
Câu 17. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. −3 ≤ m ≤ 4.
C. m = 4.
D. m = −3.
x−2
Câu 18. Tính lim
x→+∞ x + 3
2
A. −3.
B. − .
C. 1.

D. 2.
3
2

Câu 19. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
B. 3 .
C. √ .
A. 3 .
2e
e
2 e

D.

1
.
e2

Câu 20. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Hai khối chóp tứ giác.
D. Hai khối chóp tam giác.
1 − n2
bằng?
Câu 21. [1] Tính lim 2
2n + 1

1
A. .
B. 0.
2

C.

1
.
3

1
D. − .
2

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = −ey − 1.
B. xy0 = ey − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.

Câu 23. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √



3
a 6
a 6
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
6
18
36
6
Câu 22. [3-12217d] Cho hàm số y = ln

Câu 24. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. a.
B. .
C. .
D.

.
3
2
2
Câu 25. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 24.
C. 22.
D. 23.
Câu 26. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 27. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. Khối bát diện đều.
Trang 2/10 Mã đề 1


9x
Câu 28. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3

1
C. 2.
D. −1.
A. 1.
B. .
2
Câu 29. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
góc
với
đáy,
S
C
=
a
3. Thể tích khối chóp S .ABCD



3
3
3
a
a 3
a 3
A.
.
B.
.

C.
.
D. a3 .
9
3
3
Câu 30. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 13.
C. log2 13.
D. 2020.
π
Câu 31. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 2.
B. T = 2 3.
C. T = 4.
D. T = 3 3 + 1.
Câu 32. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
B. 7.
C. 5.
D.
.
A. .

2
2
Câu 33. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
a 3
2a 3
A.
.
B. a 3.
C.
.
D.
.
2
3
2
un
Câu 34. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 0.
B. 1.
C. +∞.
D. −∞.
Câu 35. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.

C. 8 mặt.

D. 7 mặt.

Câu 36. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) + g(x)] = a + b.
B. lim [ f (x)g(x)] = ab.
x→+∞
x→+∞
f (x) a
C. lim [ f (x) − g(x)] = a − b.
D. lim
= .
x→+∞
x→+∞ g(x)
b
Câu 37. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
A. a 3.
B.
.
C. a 2.

D.
.
2
3
Câu 38. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = − loga 2.
C. log2 a =
.
D. log2 a = loga 2.
loga 2
log2 a
Câu 39. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.

B. (I) và (II).

C. (II) và (III).

D. (I) và (III).
Trang 3/10 Mã đề 1




Câu 40. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. .
B. −3.
C. − .
3
3
Câu 41. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. 1 + 2 sin 2x.
C. 1 − sin 2x.
x+1
bằng
Câu 42. Tính lim
x→+∞ 4x + 3
1
A. .
B. 3.
C. 1.
4
Câu 43. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (−∞; +∞).
C. [1; 2].
12 + 22 + · · · + n2
Câu 44. [3-1133d] Tính lim
n3

2
1
A. .
B. .
3
3

C. +∞.

D. 3.
D. −1 + 2 sin 2x.

D.

1
.
3

D. (1; 2).

D. 0.

Câu 45.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.

A.
Z
C.


0dx = C, C là hằng số.

1
dx = ln |x| + C, C là hằng số.
x
Z
xα+1
α
D.
x dx =
+ C, C là hằng số.
α+1
B.

Câu 46. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (−∞; 1).
C. (0; 2).

D. R.

Câu 47. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 18.
B.
.
C. 12.
D. 27.
2

Câu 48. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = ln x − 1.

C. y0 = x + ln x.

D. y0 = 1 − ln x.

Câu 49. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
A. 2.
B. 2.
C. 1.
D. 10.
Câu 50. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {4; 3}.

D. {3; 5}.

Câu 51. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của

√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện tích

2

2
2
2
a 7
a 5
a 2
11a
A.
.
B.
.
C.
.
D.
.
8
16
4
32
Câu 52. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 22 triệu đồng.
D. 3, 03 triệu đồng.
Câu 53. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.

B. 1.
C. 2.

D. 0.
Trang 4/10 Mã đề 1


Câu 54. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
6
18
15
9
2

Câu 55. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 5.
C. 6.
5
Câu 56. Tính lim

n+3
A. 0.
B. 1.
C. 3.

D. 7.

D. 2.

Câu 57. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 24.
C. 15, 36.
D. 3, 55.
Câu 58. Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; −3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; 3; 3).
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 59. [2] Phương trình log x 4 log2
12x − 8
A. 3.
B. Vơ nghiệm.
C. 1.

D. 2.
Câu 60. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
đến đường√thẳng BD0 bằng



a b2 + c2
b a2 + c2
c a2 + b2
abc b2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 61. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Hai hình chóp tứ giác.
D. Hai hình chóp tam giác.
Câu 62. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng

ab
1
1
ab
A. 2
.
B. √
.
C. √
.
D. √
.
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
!
1
1
1
Câu 63. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. +∞.
C. 2.

D. .
2
2
Câu 64. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 6.
C. 10.
D. 12.
Câu 65. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 22.
C. y(−2) = 6.
D. y(−2) = 2.
Câu 66. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Trang 5/10 Mã đề 1


Câu 67. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
100.(1, 01)3
triệu.

B. m =
triệu.
A. m =
3
(1, 12)3 − 1
100.1, 03
(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
(1, 01)3 − 1
Câu 68. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng


√M + m
C. 7 3.
D. 8 2.
A. 16.
B. 8 3.
Câu 69. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m > 3.
D. m < 3.
p
ln x

1
Câu 70. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
1
8
8
A. .
B. .
C. .
D. .
9
3
3
9

2
3
Câu 71. [2] Phương trình log4 (x + 1) + 2 = log √2 4 − x + log8 (4 + x) có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. 2 nghiệm.
C. Vô nghiệm.
D. 3 nghiệm.
!2x−1
!2−x
3
3
Câu 72. Tập các số x thỏa mãn



5
5
A. (−∞; 1].
B. (+∞; −∞).
C. [1; +∞).
D. [3; +∞).

Câu 73. √
Thể tích của khối lập phương có cạnh bằng a 2
3


2a 2
C. V = a3 2.
D. V = 2a3 .
.
B. 2a3 2.
A.
3
Câu 74. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

3
3
a 3
a3 3

a3 6
a 2
.
B.
.
C.
.
D.
.
A.
16
24
48
48
Câu 75. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d ⊥ P.
C. d nằm trên P hoặc d ⊥ P.
D. d nằm trên P.
Câu 76. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3



2 3
A.
.
B. 3.
C. 2.
D. 1.
3
Câu 77. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
Trang 6/10 Mã đề 1


(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 4.

C. 3.

D. 2.

Câu 78. Tìm giá trị của tham số m để hàm số y = −x + 3mx + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. (−∞; −3].
C. [−3; 1].
D. [−1; 3].
3


2

Câu 79. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là

3
3

2a 3
a3 3
a 3
3
.
B.
.
C. a 3.
D.
.
A.
6
3
3
Câu 80. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {5; 3}.
D. {3; 4}.

Câu 81. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
36
12
6
Câu 82. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.

5
5
A. − < m < 0.
B. m ≥ 0.
C. m > − .
D. m ≤ 0.
4
4
Câu 83. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n3 lần.
D. 2n2 lần.
 π
Câu 84. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


1 π3
3 π6
2 π4
B. 1.
C. e .
D.
A.
e .
e .
2
2

2
Câu 85. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
1
9
2
A.
.
B. .
C.
.
D. .
10
5
10
5
Câu 86. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = 4 + .
C. T = e + 1.
D. T = e + .
e
e
Câu 87. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Năm cạnh.

C. Hai cạnh.
D. Ba cạnh.
Câu 88. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
B.
dx = log |u(x)| + C.
u(x)
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 89. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 3.

C. 4.

D. 2.
Trang 7/10 Mã đề 1


log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. 1.
C. 3.

Câu 90. [1-c] Giá trị biểu thức

A. −8.

D. 4.

Câu 91. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 92. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.423.000.
B. 102.016.000.
C. 102.424.000.
D. 102.016.000.
1

Câu 93. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R.
C. D = R \ {1}.

D. D = (−∞; 1).

Câu 94. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. e2016 .
C. 1.
D. 22016 .
Câu 95. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu

không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 3, 5 triệu đồng.
D. 70, 128 triệu đồng.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 96. [3-1214d] Cho hàm số y =
x+2
tam giác
B thuộc (C), đoạn thẳng √
AB có độ dài bằng
√ đều ABI có hai đỉnh A, √
A. 2 2.
B. 2 3.
C. 6.
D. 2.
Câu 97. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 6).
C. (1; 3; 2).
D. (2; 4; 4).
Câu 98. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = −8.
C. x = 0.
D. x = −5.
1
Câu 99. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.

3
A. (1; +∞).
B. (−∞; 3).
C. (1; 3).
D. (−∞; 1) và (3; +∞).
Câu 100. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).

Hai mặt bên
√ (S BC) và (S AD) cùng
√hợp với đáy một góc 303 .√Thể tích khối chóp S .ABCD
√ là
3
3
4a 3
8a 3
a3 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
9
3
9
x2

Câu 101. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = .
C. M = e, m = 0.
D. M = e, m = 1.
e
e
log7 16
Câu 102. [1-c] Giá trị của biểu thức
bằng
15
log7 15 − log7 30
A. 4.
B. −4.
C. 2.
D. −2.
Câu 103. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 104. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aα+β = aα .aβ .
B. aα bα = (ab)α .
C. β = a β .
D. aαβ = (aα )β .
a
Trang 8/10 Mã đề 1



Câu 105. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa

√ hai đường thẳng BD và√S C bằng

a 6
a 6
a 6
.
B.
.
C. a 6.
D.
.
A.
6
3
2
Câu 106. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp
√ S .ABCD là

3
3
3

a 2

a 3
a 3
.
B. a3 3.
.
D.
.
A.
C.
2
4
2
1
Câu 107. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 < m < −1.
C. (−∞; −2) ∪ (−1; +∞). D. −2 ≤ m ≤ −1.
[ = 60◦ , S O
Câu 108. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ Khoảng cách từ A đến (S BC) bằng
√ với mặt đáy và S O = a.

2a 57
a 57
a 57
D.
.

B.
.
C. a 57.
.
A.
19
17
19

Câu 109. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
2
6
6

3
Câu 110.
Cho hàm số f (x),
Z
Z g(x) liên tục
Z trên R. Trong các
Z mệnh đề sau, mệnhZđề nào sai? Z
A.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Câu 111. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = −10.
C. P = 10.
D. P = 21.
Câu 112.

√ Biểu thức nào sau đây khơng
√ 0 có nghĩa
−3
A.
−1.
B. (− 2) .

C. (−1)−1 .

D. 0−1 .

Câu 113. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. 4.
B. .
C. .
D. .
4
2
8
Câu 114. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m < 0.
C. m = 0.

D. m , 0.

Câu 115. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 0.

C. 3.

log 2x

x2
1 − 4 ln 2x
1
B. y0 =
.
C. y0 = 3
.
3
2x ln 10
2x ln 10

D. 1.

Câu 116. [3-1229d] Đạo hàm của hàm số y =
A. y0 =

1 − 2 ln 2x
.
x3 ln 10


D. y0 =

1 − 2 log 2x
.
x3
Trang 9/10 Mã đề 1


Câu 117. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng 2n+1.
D. Số cạnh của khối chóp bằng 2n.
Câu 118. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
B.
.
A. .
n
n

1
C. √ .
n

D.

sin n

.
n

3
2
x
Câu 119. [2] Tìm m để giá trị nhỏ nhất
√ của hàm số y = 2x + (m
√ + 1)2 trên [0; 1] bằng 2
A. m = ±3.
B. m = ± 2.
C. m = ± 3.
D. m = ±1.

Câu 120.
Các khẳng định nàoZsau đây là sai?
Z
A.
Z
C.

Z

f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. B.
f (x)dx = F(x) + C ⇒
!0
Z
Z
k f (x)dx = k

f (x)dx, k là hằng số.
D.
f (x)dx = f (x).

Z

f (t)dt = F(t) + C.

2

Câu 121. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 2.
B. 5.
C. 4.

D. 3.

Câu 122. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Hai mặt.
C. Năm mặt.

D. Ba mặt.

Câu 123. Tính diện tích hình phẳng
giới hạn bởi các đường y = xe x , y = 0, x = 1.

3
1
3

B.
.
C. .
D. 1.
A. .
2
2
2
Câu 124. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m > −1.
C. m ≥ 0.
D. m > 0.
1
Câu 125. [1] Giá trị của biểu thức log √3
bằng
10
1
1
B. −3.
C. 3.
D. − .
A. .
3
3
Câu 126. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.

A. Câu (III) sai.

B. Khơng có câu nào C. Câu (I) sai.
D. Câu (II) sai.
sai.
Câu 127. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 6.
C. V = 4.
D. V = 5.
Câu 128. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 4.

C. 5.

D. 8.

Câu 129. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 2.
B. 1.

C. 3.

D. +∞.

Câu 130. Xét hai khẳng đinh sau
Trang 10/10 Mã đề 1



(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Chỉ có (II) đúng.

C. Chỉ có (I) đúng.

D. Cả hai đều đúng.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2. A
4.

D

5. A


6.

D

7. A

8. A

3.

B

9. A

10.

11. A

12.

13.

14.

C

15.

D


17. A

18.

C

20. A

21.

D

22.

25.

26. A

C

28. A
B

30.

31.

C


32. A

33.

C

34. A

37.

B

38. A

39.

B

40. A

41.

D

44.
D

B

46.


47. A

C

48. A

49.

50.

C

51. A

D

52.
D

53.
58.

C
D

55.

56. A
D


57.

C

59.

C
D

61.

B

62.

D

63.

64.

D

65. A

66.

D


42. A

B

45.

60.

C

36.

35. A

43.

B

24. A

27. A
29.

B
C

D
B

C


16.

19.
23.

B

C

67.

B

68. A

69.
1

D
B


70.

D

71.

B

B

72.

C

73.

74.

C

75.

C

76.

C

77.

C

78.

C

79.


80.

C

81.

82.

C

83.
D

84.
B
C

92.

D

89.

C

91.

C

95. A


96.

B

97.

98.

B

99.

100. A
B

104.

D

101.

C

103.

C

107.


D
D

108.

D

109.

110.

D

111. A

112.

D

113.

114.

D

115. A

116. A
B


120. A
D

D

119.

D
D
D

B

125.

126.

B

127.
129. A

B

2

C

123.


124.
128. A

B

117.
121.

122.

B

105. A

C

106. A

130.

C

93. A

94. A

118.

B


87.

90. A

102.

C

85.

86. A
88.

D

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×