TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của khối
chóp A.GBC
A. V = 5.
B. V = 4.
C. V = 6.
D. V = 3.
2n + 1
Câu 2. Tìm giới hạn lim
n+1
A. 3.
B. 2.
C. 1.
D. 0.
Câu 3. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x y z−1
x y−2 z−3
=
.
B. = =
.
A. =
2
3
−1
1 1
1
x−2 y−2 z−3
x−2 y+2 z−3
C.
=
=
.
D.
=
=
.
2
3
4
2
2
2
Câu 4. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
C. log2 a = − loga 2.
D. log2 a =
.
A. log2 a = loga 2.
B. log2 a =
loga 2
log2 a
Câu 5. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng d :
x+1 y−5
z
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng d
2
2
−1
đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (2; 2; −1).
C. ~u = (1; 0; 2).
D. ~u = (2; 1; 6).
Câu 6. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 8.
C. 30.
D. 20.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 7. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−3; +∞).
C. (−∞; −3].
D. [−3; +∞).
Câu 8. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là −3, phần ảo là −4.
1
Câu 9. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 3).
B. (1; 3).
C. (−∞; 1) và (3; +∞). D. (1; +∞).
Câu 10. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 18 tháng.
C. 16 tháng.
D. 17 tháng.
Câu 11. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 10.
C. P = 21.
D. P = −21.
Câu 12. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. 3.
B. .
C. .
D. 1.
2
2
Trang 1/10 Mã đề 1
Câu 13.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
A.
.
B.
.
C.
.
12
4
2
√
√
D.
3
.
4
Câu 14. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
3
9
A. 0 ≤ m ≤ .
B. 0 < m ≤ .
C. 0 ≤ m ≤ .
D. m ≥ 0.
4
4
4
Câu 15. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C. a3 .
D.
.
24
6
12
log(mx)
= 2 có nghiệm thực duy nhất
Câu 16. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m > 4.
B. m ≤ 0.
C. m < 0.
D. m < 0 ∨ m = 4.
2
2
Câu 17. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.
B. 2.
C. 3.
D. 4.
x+2
Câu 18. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.
B. 3.
C. Vơ số.
D. 1.
Câu 19. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC√là
√
√ với đáy và S C = a 3.3 √
3
a 3
a 6
a3 3
2a3 6
A.
.
B.
.
C.
.
D.
.
2
12
4
9
Câu 20. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 30.
C. 20.
D. 10.
Câu 21. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 10 năm.
C. 9 năm.
D. 8 năm.
Câu 22. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. 1.
B. .
C.
.
D. 2.
2
2
Câu 23. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 91cm3 .
C. 64cm3 .
D. 84cm3 .
Câu 24. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Trang 2/10 Mã đề 1
√
Câu 25. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 2
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
6
18
36
m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
Câu 26. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 32.
C. S = 135.
D. S = 24.
Câu 27. Dãy số
!n nào có giới hạn bằng3 0?
−2
n − 3n
A. un =
.
B. un =
.
3
n+1
Câu 28. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) có giá trị lớn nhất trên K.
C. un = n − 4n.
2
!n
6
D. un =
.
5
B. f (x) liên tục trên K.
D. f (x) có giá trị nhỏ nhất trên K.
Câu 29. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (−1; −7).
C. (2; 2).
D. (0; −2).
Câu 30. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. Cả ba câu trên đều sai.
C. F(x) = G(x) trên khoảng (a; b).
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
x2
Câu 31. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
D. M = e, m = .
A. M = e, m = 0.
B. M = e, m = 1.
C. M = , m = 0.
e
e
Câu 32. Phát biểu nào sau đây là sai?
A. lim qn = 0 (|q| > 1).
B. lim un = c (un = c là hằng số).
1
1
C. lim = 0.
D. lim k = 0.
n
n
! x3 −3mx2 +m
1
nghịch biến trên
Câu 33. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m , 0.
C. m = 0.
D. m ∈ (0; +∞).
Câu 34. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
5a 3
2a3 3
4a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
2
Câu 35. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 5 mặt.
C. 4 mặt.
D. 6 mặt.
Câu 36. Hàm số y =
A. x = 3.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 0.
C. x = 1.
D. x = 2.
C. 3.
D. 1.
Câu 37. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 2.
B. +∞.
Trang 3/10 Mã đề 1
√
Câu 38. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vơ số.
C. 64.
D. 63.
Câu 39. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 24 m.
C. 8 m.
D. 16 m.
Câu 40. Bát diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {3; 4}.
D. {4; 3}.
Câu 41. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 42. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
23
1637
1079
.
B.
.
C.
.
D.
.
A.
4913
4913
68
4913
Câu 43. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 144.
C. 2.
D. 4.
x+2
Câu 44. Tính lim
bằng?
x→2
x
A. 2.
B. 1.
C. 0.
D. 3.
Câu 45. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.
C. Khối tứ diện đều.
D. Khối lập phương.
Câu 46. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > −1.
C. m > 1.
D. m ≥ 0.
Câu 47. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. Không tồn tại.
C. −5.
D. −7.
1
Câu 48. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = (1; +∞).
C. D = (−∞; 1).
D. D = R \ {1}.
Câu 49. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim [ f (x)g(x)] = ab.
B. lim
= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) + g(x)] = a + b.
D. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
1
Câu 50. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 < m < −1.
C. (−∞; −2] ∪ [−1; +∞). D. −2 ≤ m ≤ −1.
Câu 51. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là
√
√
3
a 2
a 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
12
6
12
4
Câu 52. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có một.
C. Có hai.
D. Có một hoặc hai.
Trang 4/10 Mã đề 1
Câu 53. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 10.
C. 27.
D. 12.
Câu 54. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 9 cạnh.
D. 11 cạnh.
C. 10 cạnh.
Câu 55. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. −2 + 2 ln 2.
C. 4 − 2 ln 2.
D. e.
Câu 56. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 57. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
B. 7.
C. 5.
D.
.
A. .
2
2
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 58. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (2; +∞).
C. (−∞; 2).
D. [2; +∞).
[ = 60◦ , S O
Câu 59. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ A đến (S
√ BC) bằng
√ với mặt đáy và S O = a.
√
a 57
a 57
2a 57
.
B.
.
C.
.
D. a 57.
A.
19
19
17
Câu 60. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
2
1
9
1
B. .
C.
.
D.
.
A. .
5
5
10
10
Z 1
Câu 61. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
4
0
B. 1.
C. 0.
D.
1
.
2
8
Câu 62. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 96.
C. 81.
D. 82.
Câu 63. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 5}.
C. {5; 3}.
D. {3; 4}.
Câu 64. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 65. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.
C. Khối bát diện đều.
Câu 66. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 7 mặt.
C. 8 mặt.
D. Khối tứ diện đều.
D. 9 mặt.
Trang 5/10 Mã đề 1
2
Câu 67. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2√
D. m = ± 3.
A. m = ±3.
B. m = ±1.
C. m = ± 2.
2−n
Câu 68. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 2.
C. 1.
D. 0.
Câu 69. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + 3.
C. T = e + 1.
D. T = e + .
A. T = 4 + .
e
e
Câu 70. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
d = 60◦ . Đường chéo
Câu 71. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0
◦
BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
a3 6
2a3 6
4a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 72. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 8.
C. 12.
D. 30.
Câu 73.√Thể tích của tứ diện đều √
cạnh bằng a
√
√
a3 2
a3 2
a3 2
a3 2
.
B.
.
C.
.
D.
.
A.
2
4
6
12
√3
4
Câu 74. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
5
5
2
A. a 3 .
B. a 8 .
C. a 3 .
D. a 3 .
1
Câu 75. [1] Giá trị của biểu thức log √3
bằng
10
1
1
B. 3.
C. − .
D. −3.
A. .
3
3
!
!
!
4x
1
2
2016
Câu 76. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
A. T = 2017.
B. T = 2016.
C. T = 1008.
D. T =
2017
√
Câu 77. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
"
!
5
5
A. [3; 4).
B.
;3 .
C. (1; 2).
D. 2; .
2
2
t
9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
Câu 78. [4] Xét hàm số f (t) = t
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 1.
C. Vơ số.
D. 0.
Câu 79. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ± 2.
B. m = ±3.
C. m = ±1.
D. m = ± 3.
Câu 80. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 1.
C. 22016 .
D. 0.
Câu 81. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a
a 3
A. .
B. .
C.
.
D. a.
2
3
2
Trang 6/10 Mã đề 1
Câu 82. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
C. 9.
D. .
A. 6.
B. .
2
2
Câu 83. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 84. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.
B. Khơng có câu nào C. Câu (I) sai.
sai.
Câu 85. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {3; 4}.
D. Câu (II) sai.
D. {5; 3}.
Câu 86. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có hai.
C. Có một.
D. Có vơ số.
Câu 87. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 20, 128 triệu đồng. C. 3, 5 triệu đồng.
D. 70, 128 triệu đồng.
Câu 88. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 2.
C. 0, 5.
D. 0, 3.
Câu 89. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3
√
√
2 3
A. 1.
B. 2.
C. 3.
D.
.
3
Câu 90. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
A. √
.
B. 2
.
C. √
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 91. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 3.
C. 2.
D. 4.
Câu 92. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số cạnh của khối chóp bằng 2n.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Trang 7/10 Mã đề 1
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0.
D. m < 0 ∨ m > 4.
Câu 93. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m = 4.
B. m ≤ 0.
Câu 94. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = ln 10.
Z
Câu 95. Cho
A. −3.
1
2
B. f 0 (0) = 1.
C. f 0 (0) =
1
.
ln 10
D. f 0 (0) = 10.
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
B. 0.
C. 1.
7n2 − 2n3 + 1
Câu 96. Tính lim 3
3n + 2n2 + 1
2
B. 1.
A. - .
3
Câu 97. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 20.
B. 2 < m ≤ 3.
7
.
3
C. 0.
D.
C. 12.
D. 30.
Câu 98. [3-12214d] Với giá trị nào của m thì phương trình
A. 2 ≤ m ≤ 3.
D. 3.
1
3|x−2|
= m − 2 có nghiệm
D. 0 < m ≤ 1.
C. 0 ≤ m ≤ 1.
Câu 99. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {5; 2}.
C. {2}.
D. {5}.
Câu 100. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc
Biết rằng khoảng cách từ A đến cạnh
√chóp S .ABCD là
√ S C là a. Thể tích khối
3
3
√
a 3
a 2
A. a3 3.
B.
.
C.
.
6
12
Câu 101. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = 0.
C. x = −8.
[ = 60◦ , S A ⊥ (ABCD).
BAD
√
a3 2
D.
.
4
D. x = −5.
Câu 102. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
D. lim+ f (x) = f (a) và lim− f (x) = f (b).
Câu 103. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
C. lim
1
= 0 với k > 1.
nk
1
B. lim √ = 0.
n
D. lim qn = 1 với |q| > 1.
Câu 104. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
8a
5a
2a
A. .
B.
.
C.
.
D.
.
9
9
9
9
log 2x
Câu 105. [3-1229d] Đạo hàm của hàm số y =
là
x2
1 − 4 ln 2x
1
1 − 2 ln 2x
1 − 2 log 2x
0
0
0
A. y0 =
.
B.
y
=
.
C.
y
=
.
D.
y
=
.
2x3 ln 10
2x3 ln 10
x3 ln 10
x3
Câu 106. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 − ln x.
C. y0 = ln x − 1.
D. y0 = 1 + ln x.
Trang 8/10 Mã đề 1
Câu 107. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
(1, 01)3
120.(1, 12)3
triệu.
B. m =
triệu.
A. m =
(1, 12)3 − 1
(1, 01)3 − 1
100.1, 03
100.(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
3
Câu 108. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 6.
B. −5.
C. 5.
2
D. −6.
Câu 109. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. −e.
B. − 2 .
C. − .
D. − .
e
e
2e
1
Câu 110. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey + 1.
B. xy0 = ey − 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
Câu 111. ZCho hai hàmZy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
x
Câu 112. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
1
3
3
A. .
B. .
C.
.
D. 1.
2
2
2
2
Câu 113. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
2
A. 3 .
B. √ .
C. 3 .
2e
e
2 e
D.
1
.
e2
Câu 114. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≤ 3.
D. m ≥ 3.
p
ln x
1
Câu 115. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
A. .
B. .
C. .
D. .
9
3
9
3
Câu 116. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số nghịch biến trên khoảng −∞; .
3
!
1
B. Hàm số nghịch biến trên khoảng ; 1 .
3!
1
D. Hàm số đồng biến trên khoảng ; 1 .
3
Câu 117. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp đôi.
C. Tăng gấp 6 lần.
D. Tăng gấp 8 lần.
Trang 9/10 Mã đề 1
Câu 118. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là
√
a3
a3 3
a3 3
3
A.
.
B.
.
C. a .
D.
.
3
9
3
x2 − 5x + 6
Câu 119. Tính giới hạn lim
x→2
x−2
A. 1.
B. −1.
C. 5.
D. 0.
Câu 120. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là 4, phần ảo là 1.
Câu 121. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 3.
C. 4.
D. 8.
!2x−1
!2−x
3
3
≤
là
Câu 122. Tập các số x thỏa mãn
5
5
A. [1; +∞).
B. (−∞; 1].
C. [3; +∞).
D. (+∞; −∞).
Câu 123. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
[ = 60◦ , S O
Câu 124. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ O đến (S BC) bằng
√
√ với mặt đáy và S O = a.
√
a 57
2a 57
a 57
.
B.
.
C. a 57.
D.
.
A.
19
17
19
Câu 125. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 6.
C. 8.
D. 12.
Câu 126. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.
Câu 127.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
dx = x + C, C là hằng số.
A.
B.
xα dx =
xα+1
+ C, C là hằng số.
α+1
Z
1
C.
dx = ln |x| + C, C là hằng số.
D.
0dx = C, C là hằng số.
x
Câu 128. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình
! chiếu của B, C lên các !cạnh AC, AB. Tọa độ hình!chiếu của A lên BC là
7
8
5
A.
; 0; 0 .
B.
; 0; 0 .
C.
; 0; 0 .
D. (2; 0; 0).
3
3
3
Z
Câu 129. [1] Tính lim
A. 1.
1 − 2n
bằng?
3n + 1
1
B. .
3
2
C. − .
3
D.
2
.
3
π π
Câu 130. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 7.
C. 1.
D. −1.
3
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
B
2.
B
3.
B
4.
B
5.
C
6.
7.
C
8. A
9.
C
13.
12.
B
16.
D
C
17.
C
14. A
B
15.
19.
10.
D
11.
D
D
18. A
B
20. A
21.
C
22.
23.
C
24. A
25.
C
26.
B
28.
B
27. A
29.
D
D
30. A
31. A
32. A
33.
C
34.
35.
C
36.
37. A
D
C
38. A
39.
D
41.
40.
C
42.
C
D
43.
B
44. A
45.
B
46.
B
47.
B
48.
B
49.
B
50.
D
52.
D
51.
C
53. A
54.
55.
D
C
56.
D
57. A
58.
D
59. A
60.
D
61.
63.
D
B
65.
67.
62.
64.
D
66.
B
68. A
1
C
B
D
69.
B
70.
C
C
71.
D
72.
73.
D
74.
C
75.
77.
D
76.
C
78. A
B
79. A
80.
D
D
81.
D
82.
83.
D
84.
B
85.
D
86.
B
87.
B
88.
89.
B
90. A
91.
D
92.
93. A
94. A
95. A
96. A
D
B
97.
D
98.
99.
D
100.
D
102.
D
101.
C
103.
D
105.
107.
104.
B
D
111.
C
113.
D
115. A
D
B
110.
B
112.
D
114.
D
B
120. A
121.
B
122. A
123.
C
124. A
125.
C
126. A
129.
B
118. A
119.
127.
D
108.
116.
117.
B
106.
C
109.
B
B
128.
130.
C
2
B
C