TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
1
1
1
Câu 1. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
A. +∞.
B. 2.
C. .
2
Câu 2. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 20.
!
C. 12.
D.
3
.
2
D. 8.
Câu 3. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (S AB) và (S AD) cùng
vng góc
với
đáy,
S
C
=
a
3. Thể tích khối chóp S .ABCD√là
√
3
a3 3
a3
a 3
.
B. a3 .
C.
.
D.
.
A.
3
9
3
Câu 4. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là 3, phần ảo là −4.
1 − 2n
bằng?
Câu 5. [1] Tính lim
3n + 1
2
A. .
B. 1.
3
2
C. − .
3
D.
1
.
3
Câu 6. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1728
1079
1637
.
B.
.
C.
.
D.
.
A.
4913
68
4913
4913
Câu 7. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
5
7
8
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
A. (2; 0; 0).
B.
3
3
3
Câu 8. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 3.
C. 1.
D. 0.
Câu 9. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. −3.
C. 3.
D. 0.
Câu 10. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
B.
; +∞ .
C. −∞; − .
2
2
2
Câu 11. Giá trị của giới hạn lim
A. 2.
B. 1.
2−n
bằng
n+1
Câu 12. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = x
.
B. y0 = 2 x . ln x.
2 . ln x
C. −1.
C. y0 =
!
1
D. −∞; .
2
D. 0.
1
.
ln 2
D. y0 = 2 x . ln 2.
Câu 13. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 8 m.
C. 16 m.
D. 12 m.
Trang 1/10 Mã đề 1
Câu 14. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 10.
B. f 0 (0) = ln 10.
C. f 0 (0) = 1.
Câu 15. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
C. lim qn = 0 (|q| > 1).
D. f 0 (0) =
1
.
ln 10
1
= 0.
nk
D. lim un = c (un = c là hằng số).
B. lim
Câu 16. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 6.
1
Câu 17. [1] Giá trị của biểu thức log √3
bằng
10
1
A. 3.
B. − .
3
C. 10.
D. 8.
C. −3.
D.
1
.
3
2
Câu 18. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 4.
C. 3.
D. 2.
Câu 19. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng
√
√
√
√
a 6
a 6
a 6
A. a 6.
.
C.
.
D.
.
B.
6
2
3
mx − 4
Câu 20. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 34.
B. 67.
C. 26.
D. 45.
Câu 21. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 6.
C. 12.
D. 8.
d = 30◦ , biết S BC là tam giác đều
Câu 22. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
13
9
16
26
Câu 23. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 20.
C. 30.
D. 12.
Câu 24. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 25. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 3.
B. 4.
C. 8.
D. 6.
x=t
Câu 26. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4
2
2
Câu 27. Tìm giá trị nhỏ nhất của hàm số y = (x − 2x + 3) − 7
A. −3.
B. −5.
C. Không tồn tại.
D. −7.
Trang 2/10 Mã đề 1
Câu 28. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
C. 2, 4, 8.
D. 8, 16, 32.
A. 6, 12, 24.
B. 2 3, 4 3, 38.
Câu 29. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 4).
C. (2; 4; 6).
D. (1; 3; 2).
Câu 30. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là
√
√
√
a3 5
a3 15
a3 6
3
A.
.
B. a 6.
C.
.
D.
.
3
3
3
Câu 31. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R.
C. D = R \ {1}.
D. D = (0; +∞).
x+2
bằng?
Câu 32. Tính lim
x→2
x
A. 2.
B. 1.
C. 0.
D. 3.
1 + 2 + ··· + n
Câu 33. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = 1.
B. lim un = .
2
C. lim un = 0.
D. Dãy số un khơng có giới hạn khi n → +∞.
a
1
Câu 34. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 7.
C. 1.
D. 4.
Câu 35. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P hoặc d ⊥ P.
C. d ⊥ P.
D. d nằm trên P.
!2x−1
!2−x
3
3
≤
là
Câu 36. Tập các số x thỏa mãn
5
5
A. [3; +∞).
B. (+∞; −∞).
C. (−∞; 1].
D. [1; +∞).
1
Câu 37. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 4.
C. 1.
D. 2.
√
√
Câu 38. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
9
3
B. m ≥ 0.
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
A. 0 ≤ m ≤ .
4
4
4
2
Câu 39. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a bằng
1
1
A. 2.
B. −2.
C. − .
D. .
2
2
2
2
d = 300 .
Câu 40. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V √của khối lăng trụ đã cho. √
√
a3 3
3a3 3
A. V = 3a3 3.
B. V =
.
C. V =
.
D. V = 6a3 .
2
2
Câu 41. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; 0) và (1; +∞). C. (−∞; −1) và (0; +∞). D. (−1; 0).
Câu 42. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 5.
C. 2.
D. 3.
Trang 3/10 Mã đề 1
π
Câu 43. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
2 π4
1 π3
3 π6
e .
C. e .
D.
e .
A. 1.
B.
2
2
2
Câu 44. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
A. 34.
B. 68.
C. 5.
D.
.
17
Câu 45. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. 4.
C. −4.
Câu 46. Hàm số nào sau đây khơng có cực trị
1
A. y = x4 − 2x + 1.
B. y = x + .
x
D. −2.
x−2
.
D. y = x3 − 3x.
2x + 1
log(mx)
Câu 47. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0.
C. m ≤ 0.
D. m < 0 ∨ m > 4.
C. y =
Câu 48. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
A. lim [ f (x) − g(x)] = a − b.
x→+∞
f (x) a
C. lim
= .
x→+∞ g(x)
b
x→+∞
B. lim [ f (x) + g(x)] = a + b.
x→+∞
D. lim [ f (x)g(x)] = ab.
x→+∞
Câu 49. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Khơng có.
C. Có một.
D. Có hai.
Câu 50. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 1.
C. 2.
D. Vơ nghiệm.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB
√ đều ABI có hai đỉnh A, √
√ có độ dài bằng
A. 6.
B. 2 3.
C. 2 2.
D. 2.
1
Câu 52. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 < m ≤ 1.
D. 2 < m ≤ 3.
Câu 51. [3-1214d] Cho hàm số y =
Câu 53. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {3; 3}.
D. {4; 3}.
Câu 54.
!0 nào sau đây sai?
Z Mệnh đề
A.
f (x)dx = f (x).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Câu 55. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tam giác.
Trang 4/10 Mã đề 1
Câu 56. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 10.
7n2 − 2n3 + 1
Câu 57. Tính lim 3
3n + 2n2 + 1
2
7
A. .
B. - .
3
3
C. 8.
D. 6.
C. 1.
D. 0.
Câu 58. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 17 tháng.
B. 16 tháng.
C. 18 tháng.
D. 15 tháng.
Câu 59. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
36
12
6
Câu 60. Tứ diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {4; 3}.
D. {5; 3}.
Câu 61. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.
√
√
√
√
5 13
A. 2 13.
.
D. 26.
B. 2.
C.
13
x2 − 3x + 3
đạt cực đại tại
Câu 62. Hàm số y =
x−2
A. x = 0.
B. x = 3.
C. x = 1.
D. x = 2.
Câu 63. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
c+2
c+3
c+1
D.
3b + 3ac
.
c+2
Câu 64. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≥ .
C. m > .
D. m ≤ .
4
4
4
4
Câu 65. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 10 năm.
D. 14 năm.
Câu 66. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√
√
√ là
3
3
3
3
8a 3
a 3
4a 3
8a 3
A.
.
B.
.
C.
.
D.
.
3
9
9
9
Câu 67. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 9 mặt.
D. 3 mặt.
Câu 68. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 4.
C. V = 6.
D. V = 5.
Trang 5/10 Mã đề 1
Câu 69. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m
√
B. 8 3.
C. 16.
D. 7 3.
A. 8 2.
9x
Câu 70. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. −1.
B. 2.
C. .
D. 1.
2
Câu 71. Dãy số nào sau đây có giới hạn khác 0?
sin n
n+1
1
1
B.
.
C.
.
D. .
A. √ .
n
n
n
n
√3
4
Câu 72. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
5
2
5
B. a 3 .
C. a 8 .
D. a 3 .
A. a 3 .
tan x + m
Câu 73. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. [0; +∞).
B. (−∞; 0] ∪ (1; +∞). C. (−∞; −1) ∪ (1; +∞). D. (1; +∞).
Câu 74. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 2.
C. 0, 4.
D. 0, 5.
p
ln x
1
Câu 75. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
1
8
8
A. .
B. .
C. .
D. .
3
9
9
3
3a
Câu 76. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a
2a
a
a 2
A. .
B.
.
C. .
D.
.
4
3
3
3
√
Câu 77. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
a 38
3a 58
3a
3a 38
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Z 1
6
2
3
Câu 78. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 4.
B. −1.
C. 6.
D. 2.
q
2
Câu 79. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].
C. m ∈ [−1; 0].
D. m ∈ [0; 1].
Z 1
Câu 80. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
1
1
A. .
B. .
C. 1.
D. 0.
2
4
Câu 81. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt phẳng vng góc với (ABCD). Thể tích khối chóp S .ABCD là
Trang 6/10 Mã đề 1
√
a3 3
A.
.
4
√
a3 2
C.
.
2
√
a3 3
D.
.
2
! x3 −3mx2 +m
1
Câu 82. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ R.
C. m = 0.
D. m ∈ (0; +∞).
√
B. a 3.
3
Câu 83. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m ≥ 0.
C. − < m < 0.
D. m ≤ 0.
A. m > − .
4
4
Câu 84. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 5
a3 3
.
B.
.
C.
.
D.
.
A.
12
4
12
6
Câu 85. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 1.
C. m > 0.
D. m ≥ 0.
d = 120◦ .
Câu 86. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 2a.
B. 3a.
C. 4a.
D.
.
2
log 2x
là
Câu 87. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 2 log 2x
1 − 4 ln 2x
1
1 − 2 ln 2x
0
0
0
A. y0 =
.
C.
y
=
.
D.
y
=
.
.
B.
y
=
x3
x3 ln 10
2x3 ln 10
2x3 ln 10
Câu 88. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 89. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
C là
√
√
a3 3
a3 3
a3
3
A.
.
B. a .
C.
.
D.
.
2
6
3
Câu 90. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
x+3
Câu 91. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 3.
C. 1.
D. 2.
Câu 92. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 12 năm.
C. 11 năm.
D. 13 năm.
Câu 93. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 20.
2
x −9
Câu 94. Tính lim
x→3 x − 3
A. +∞.
B. 6.
C. 8.
D. 12.
C. 3.
D. −3.
Trang 7/10 Mã đề 1
Câu 95. Dãy
!n số nào sau đây có giới
!n hạn là 0?
4
5
A. − .
B.
.
C.
3
e
x−2
Câu 96. Tính lim
x→+∞ x + 3
A. −3.
B. 1.
C.
√
Câu 97. Xác định phần ảo của số √
phức z = ( 2 + 3i)2
A. 7.
B. −6 2.
C.
!n
1
.
3
!n
5
D.
.
3
2.
2
D. − .
3
−7.
√
D. 6 2.
Câu 98. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là
√
√
a3 3
a3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
8
4
4
12
Câu 99. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 22.
C. y(−2) = −18.
D. y(−2) = 6.
Câu 100. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 10.
C. 20.
D. 30.
Câu 101. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
A. 27.
B. 18.
C. 12.
D.
2
√
Câu 102. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
A. 5.
B. .
C. 5.
D. 25.
5
Câu 103. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích khối chóp S .ABCD là √
√
√
√
a3 3
a3 3
2a3 3
3
.
B. a 3.
.
D.
.
C.
A.
3
6
3
√
Câu 104. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√
√
√ cho là
πa3 6
πa3 3
πa3 3
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
6
3
2
x−3
Câu 105. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. −∞.
C. 1.
D. 0.
Câu 106. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 − 3n
.
B.
u
=
.
A. un =
n
5n − 3n2
n2
C. un =
1 − 2n
.
5n + n2
Câu 107. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 27.
C. 12.
D. un =
n2 + n + 1
.
(n + 1)2
D. 10.
Câu 108. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm tứ diện đều.
Trang 8/10 Mã đề 1
Câu 109. Thể tích của khối lăng
√ trụ tam giác đều có cạnh√bằng 1 là:
3
3
3
A. .
B.
.
C.
.
4
12
4
√
3
D.
.
2
π
Câu 110. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu thức T = a + b 3.
√
√
A. T = 4.
B. T = 2.
C. T = 2 3.
D. T = 3 3 + 1.
Câu 111. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 2400 m.
C. 6510 m.
D. 1202 m.
Câu 112. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≤ .
C. m > .
D. m ≥ .
4
4
4
4
Câu 113. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 114. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {3; 5}.
D. {4; 3}.
Câu 115. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 6.
D. 12.
C. 10.
Câu 116. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. 3 nghiệm.
C. Vô nghiệm.
D. 2 nghiệm.
Câu 117. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính
.ABC theo a
√ thể tích của khối chóp 3S√
√
3
a 15
a 5
a3 15
a3
A.
.
B.
.
C.
.
D.
.
5
25
25
3
Câu 118. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 20.
C. 30.
D. 12.
Câu 119. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. Vô nghiệm.
C. 2.
D. 3.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 120. Cho hình chóp S .ABC có BAC
(ABC). Thể
√ tích khối chóp S .ABC
√là
√
3
3
√
a 2
a 3
a3 3
A.
.
B.
.
C.
.
D. 2a2 2.
24
24
12
Câu 121. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc
45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
√
10a3 3
A.
.
B. 40a3 .
C. 10a3 .
D. 20a3 .
3
Câu 122. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Bốn cạnh.
C. Năm cạnh.
D. Ba cạnh.
x+2
Câu 123. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.
B. 1.
C. Vô số.
D. 3.
Trang 9/10 Mã đề 1
x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−∞; −3].
C. (−3; +∞).
D. [−3; +∞).
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 125. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. [2; +∞).
C. (−∞; 2).
D. (2; +∞).
Câu 124. [4-1212d] Cho hai hàm số y =
Câu 126. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. − .
C. −e.
D. − 2 .
2e
e
e
Câu 127. Dãy!số nào có giới hạn bằng 0?
!n
n
n3 − 3n
6
−2
.
B. un =
.
C. un =
.
D. un = n2 − 4n.
A. un =
3
n+1
5
√
Câu 128. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. Vô số.
C. 63.
D. 62.
Câu 129. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường
√
√
√
√ thẳng BD bằng
abc b2 + c2
c a2 + b2
a b2 + c2
b a2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 130. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 3 lần.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
B
2. A
3.
D
C
5.
7.
B
9.
B
6. A
8.
C
12.
13.
C
14.
15.
C
16.
17.
B
18.
19.
B
20. A
23.
B
25. A
D
B
C
26.
C
C
28. A
29.
C
30.
31.
B
32. A
33.
B
34.
35.
B
36.
C
D
B
D
38. A
B
40.
41.
43.
B
24.
27.
39.
D
22. A
C
37.
D
10. A
11.
21.
C
4.
D
C
42. A
D
44.
B
45.
D
47. A
49.
D
46.
C
48.
C
50.
B
52.
D
53. A
54.
D
55. A
56.
D
51.
57.
B
B
58.
B
B
59.
C
60.
61.
C
62.
63.
D
64.
D
D
65.
B
66.
68.
B
69.
1
C
C
70.
D
71.
72.
D
73.
74. A
C
D
75.
C
77.
C
78. A
79.
C
80. A
81.
76.
B
82.
C
83. A
84.
C
85. A
D
86.
88.
87.
C
91.
92.
B
93. A
94.
B
95.
96.
B
97.
98. A
99.
100. A
101.
102.
D
106.
C
107. A
112.
C
111.
C
D
115. A
C
D
117.
118.
D
119. A
C
121.
120. A
122.
D
D
123. A
B
125.
126. A
128.
B
109.
116.
124.
C
113.
B
114.
D
D
105.
110. A
C
D
C
B
B
103.
104.
108.
B
89. A
B
90.
D
B
127. A
D
129.
130. A
2
D