TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [1] Đạo hàm của làm số y = log x là
1
1
1
A. y0 = .
B. y0 =
.
C.
.
D.
x
x ln 10
10 ln x
Câu 2. Cho hình √chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC =
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là
√
3
√
a
a3 6
15
.
B. a3 6.
C.
.
D.
A.
3
3
Câu 3. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D.
log 2x
Câu 4. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 4 ln 2x
1 − 2 ln 2x
1 − 2 log 2x
A. y0 =
.
B. y0 =
.
C. y0 = 3
.
D.
3
3
x
2x ln 10
x ln 10
1 − 2n
Câu 5. [1] Tính lim
bằng?
3n + 1
1
2
2
A. .
B. .
C. − .
D.
3
3
3
!
5 − 12x
Câu 6. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 3.
B. 1.
C. Vô nghiệm.
D.
ln 10
.
x
2AB = 2a, cạnh S A ⊥
y0 =
√
a3 5
.
3
6 đỉnh, 9 cạnh, 6 mặt.
y0 =
2x3
1
.
ln 10
1.
2.
Câu 7. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1.
√
1
3
3
B. 1.
C. .
D.
.
A. .
2
2
2
Câu 8. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là
√
√
3
a 2
a 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
4
12
6
Câu 9. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc của
0
A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và BC
a 3
. Khi đó thể tích khối lăng trụ là
là
4 √
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
6
36
24
Câu 10. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
C. Khối bát diện đều. D. Khối 12 mặt đều.
1
Câu 11. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 < m ≤ 1.
D. 2 < m ≤ 3.
Câu 12. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 13. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a = loga 2.
log2 a
loga 2
Trang 1/11 Mã đề 1
Câu 14. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) + g(x)] = a + b.
B. lim [ f (x)g(x)] = ab.
x→+∞
x→+∞
f (x) a
= .
D. lim [ f (x) − g(x)] = a − b.
C. lim
x→+∞
x→+∞ g(x)
b
x2
Câu 15. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = e, m = 1.
C. M = e, m = .
D. M = , m = 0.
e
e
Câu 16. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 3
a3 5
a3 5
a3 5
.
B.
.
C.
.
D.
.
A.
12
12
4
6
√
x2 + 3x + 5
Câu 17. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. 1.
C. 0.
D. − .
4
4
Câu 18. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.
√
√
√
√
5 13
.
D. 2.
A. 2 13.
B. 26.
C.
13
Câu 19. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 9 năm.
C. 7 năm.
D. 8 năm.
2
x − 12x + 35
Câu 20. Tính lim
x→5
25 − 5x
2
2
B. .
C. −∞.
D. +∞.
A. − .
5
5
Câu 21. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
100.(1, 01)3
triệu.
B. m =
triệu.
A. m =
3
(1, 12)3 − 1
100.1, 03
(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
(1, 01)3 − 1
Câu 22. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A.
; +∞ .
B. −∞; − .
C. −∞; .
2
2
2
!
1
D. − ; +∞ .
2
Câu 23. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = −10.
C. P = 21.
D. P = 10.
Câu 24. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 24 m.
C. 12 m.
D. 16 m.
Câu 25. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 12.
C. 8.
D. 20.
Trang 2/11 Mã đề 1
Câu 26. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [−1; 3].
C. [1; +∞).
D. [−3; 1].
Câu 27. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 20.
C. 10.
D. 12.
Câu 28. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 40 .(3)10
C 20 .(3)20
C 10 .(3)40
C 20 .(3)30
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
Câu 29. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = 4 + .
C. T = e + 1.
D. T = e + 3.
A. T = e + .
e
e
Câu 30. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (−∞; 1).
C. (0; 2).
D. R.
√3
4
Câu 31. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
2
7
5
5
A. a 3 .
B. a 3 .
C. a 8 .
D. a 3 .
Câu 32. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 17 tháng.
C. 15 tháng.
D. 18 tháng.
Câu 33. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 − 2e
1 + 2e
.
B. m =
.
C. m =
.
A. m =
4 − 2e
4 − 2e
4e + 2
Câu 34. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y = x4 − 2x + 1.
B. y =
.
C. y = x + .
2x + 1
x
Câu 35. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể
là:
A. 46cm3 .
B. 64cm3 .
C. 27cm3 .
1
Câu 36. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. 1.
C. −2.
D. m =
1 + 2e
.
4e + 2
D. y = x3 − 3x.
tích của khối lập phương đó
D. 72cm3 .
D. −1.
Câu 37. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un
!
un
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= a , 0 và lim vn = ±∞ thì lim
= 0.
!vn
un
= a > 0 và lim vn = 0 thì lim
= +∞.
vn
Câu 38.! Dãy số nào sau đây có giới
!n hạn là 0?
n
1
5
A.
.
B.
.
3
3
!n
5
C. − .
3
!n
4
D.
.
e
Trang 3/11 Mã đề 1
Câu 39. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = S h.
B. V = 3S h.
C. V = S h.
2
1
D. V = S h.
3
Câu 40. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 12.
C. ln 4.
D. ln 10.
Câu 41.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.
Z
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. B.
f (x)dx = F(x) +C ⇒
!0
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = f (x).
√
Câu 42. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
A. 3.
B. .
C. −3.
3
Z
f (u)dx = F(u) +C.
1
D. − .
3
√
Câu 43. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 2
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
6
36
18
Câu 44. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 45. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.
D. 1 nghiệm.
Câu 46. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp √
S .ABCD là
√ S H ⊥ (ABCD), S A =
3
3
3
4a 3
4a
2a 3
2a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 47. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√
√ hình chóp S .ABCD với mặt
a2 7
11a2
a2 5
a2 2
.
B.
.
C.
.
D.
.
A.
4
8
32
16
√
Câu 48. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vô nghiệm.
B. 3 nghiệm.
C. 1 nghiệm.
D. 2 nghiệm.
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2].
C. (2; +∞).
D. (−∞; 2).
Câu 49. [4-1213d] Cho hai hàm số y =
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.
Câu 50. [3-12217d] Cho hàm số y = ln
A. xy0 = ey − 1.
Câu 51. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 10.
C. 8.
D. 4.
Trang 4/11 Mã đề 1
Câu 52. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
2
1
1
9
.
B. .
C. .
D.
.
A.
10
5
5
10
12 + 22 + · · · + n2
Câu 53. [3-1133d] Tính lim
n3
1
2
A. 0.
B. .
C. +∞.
D. .
3
3
2
−1
Câu 54. [2-c] Giá trị nhỏ nhất của hàm số y = x ln x trên đoạn [e ; e] là
1
1
1
B. − .
C. − .
D. −e.
A. − 2 .
e
e
2e
Câu 55. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 5.
C. 0, 4.
D. 0, 2.
Câu 56. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m ≤ .
C. m > .
D. m < .
A. m ≥ .
4
4
4
4
Câu 57. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 58. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 24.
C. 20.
D. 3, 55.
√
2
Câu 59. [4-1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. 62.
D. Vô số.
Câu 60. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. 2e4 .
C. −e2 .
D. 2e2 .
2
2
Câu 61. [3-c] Giá trị nhỏ nhất và√giá trị lớn nhất của hàm√số f (x) = 2sin x + 2cos x lần lượt
√ là
C. 2 và 3.
D. 2 và 2 2.
A. 2 và 3.
B. 2 2 và 3.
Câu 62. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e + 1.
B. 2e.
C. .
e
x+2
bằng?
Câu 63. Tính lim
x→2
x
A. 3.
B. 0.
C. 1.
D. 3.
D. 2.
Câu 64.
√ [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 10.
C. 2.
D. 1.
!4x
!2−x
2
3
Câu 65. Tập các số x thỏa mãn
≤
là
3 # 2
!
#
"
!
"
2
2
2
2
A. − ; +∞ .
B. −∞; .
C. −∞; .
D.
; +∞ .
3
5
3
5
Câu 66. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 1.
C. −1.
D. 6.
Trang 5/11 Mã đề 1
Câu 67. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (II) sai.
C. Câu (III) sai.
D. Câu (I) sai.
sai.
Câu 68. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. 3.
C. Vô số.
D. 1.
Câu 69. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. 1 − sin 2x.
C. −1 + 2 sin 2x.
D. −1 + sin x cos x.
Câu 72. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. 3.
D. +∞.
√
Câu 70. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là
√
3
√
a3
a3 3
a 3
.
B.
.
C.
.
D. a3 3.
A.
3
4
12
Câu 71. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
C. 2.
Câu 73. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
C. 25.
A. 5.
B. 5.
D.
Câu 74. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 6.
D. 10.
√
C. 8.
1
.
5
Câu 75. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Cả hai câu trên sai. C. Chỉ có (II) đúng.
D. Chỉ có (I) đúng.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 76. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = −e − 1.
C. xy0 = ey + 1.
D. xy0 = ey − 1.
x+1
Câu 77. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. 1.
C. .
D. .
6
3
2
2
Câu 78. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a bằng
1
1
A. −2.
B. 2.
C. − .
D. .
2
2
Trang 6/11 Mã đề 1
Câu 79.√Thể tích của tứ diện đều √
cạnh bằng a
√
√
a3 2
a3 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
6
12
4
2
9t
Câu 80. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 2.
C. Vô số.
D. 1.
√
Câu 81. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
"
!
5
5
C. (1; 2).
D.
;3 .
A. [3; 4).
B. 2; .
2
2
Câu 82. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 8.
C. 20.
D. 12.
Câu 83. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng
√
√
√
√
a 3
2a 3
a 3
A. a 3.
B.
.
C.
.
D.
.
3
2
2
2
Câu 84. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 2.
C. 4.
D. 3.
Câu 85. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim− f (x) = f (b).
D. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
Câu 86. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 5 mặt.
C. 3 mặt.
D. 6 mặt.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 87. Tìm m để hàm số y =
x+m
A. 34.
B. 67.
C. 45.
D. 26.
Câu 88. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 1; m = 1.
−2
C. M = e + 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 89. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 120 cm2 .
D. 160 cm2 .
Câu 90. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (0; −2).
C. (2; 2).
D. (1; −3).
Câu 91. Tìm giá trị nhỏ nhất của hàm số y = (x − 2x + 3) − 7
A. −3.
B. −5.
C. Không tồn tại.
D. −7.
!
!
!
4x
1
2
2016
Câu 92. [3] Cho hàm số f (x) = x
+f
+ ··· + f
. Tính tổng T = f
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T =
.
C. T = 1008.
D. T = 2016.
2017
ln x p 2
1
Câu 93. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
A. .
B. .
C. .
D. .
9
3
9
3
2
2
Trang 7/11 Mã đề 1
Câu 94. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y+2 z−3
x y−2 z−3
=
.
B.
=
=
.
A. =
2
3
−1
2
2
2
x y z−1
x−2 y−2 z−3
C. = =
.
D.
=
=
.
1 1
1
2
3
4
Câu 95. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 1.
B. 3.
C. .
D. .
2
2
x
Câu 96. [2] Tổng các nghiệm của phương trình log4 (3.2 − 1) = x − 1 là
A. 2.
B. 5.
C. 3.
D. 1.
2
m
ln x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
Câu 97. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 32.
C. S = 24.
D. S = 135.
Câu 98. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 25 triệu đồng.
Câu 99. Trong các khẳng định sau, khẳng định nào sai?√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Cả ba đáp án trên.
x2 − 3x + 3
đạt cực đại tại
Câu 100. Hàm số y =
x−2
A. x = 1.
B. x = 2.
5
Câu 101. Tính lim
n+3
A. 3.
B. 1.
Câu 102. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) có giá trị nhỏ nhất trên K.
C. x = 0.
D. x = 3.
C. 2.
D. 0.
B. f (x) có giá trị lớn nhất trên K.
D. f (x) liên tục trên K.
Câu 103. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (−∞; 6, 5).
C. [6, 5; +∞).
D. (4; +∞).
Câu 104. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối
√ chóp S .ABMN là 3 √
√
√
3
5a 3
a 3
4a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
2
3
3
! x3 −3mx2 +m
1
Câu 105. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m ∈ (0; +∞).
C. m , 0.
D. m = 0.
Trang 8/11 Mã đề 1
√
Câu 106. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 38
3a 58
3a
a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
√
√
Câu 107. Phần thực
và
phần
ảo
của
số
phức
z
=
2
−
1
−
3i lần lượt l √
√
√
√
B. Phần thực là 1√− 2, phần ảo là − √3.
A. Phần thực là √2, phần ảo là 1 − √3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
!
x+1
Câu 108. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
2016
4035
.
B.
.
C.
.
D. 2017.
A.
2018
2018
2017
Câu 109. Biểu thức nào sau đây khơng có nghĩa
√
√
−3
A. (−1)−1 .
B. 0−1 .
C.
−1.
D. (− 2)0 .
Câu 110. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 7.
C. 0.
D. 9.
Câu 111.
Cho hàm số
Z
Z f (x), g(x) liên tục trên R. Trong các
Z mệnh đề sau, mệnh
Z đề nào
Z sai?
k f (x)dx = f
A.
Z
C.
f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
f (x)g(x)dx =
B.
Z
D.
f (x)dx g(x)dx.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Câu 112. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A. a3 .
B.
.
C.
.
D.
.
12
24
6
Câu 113. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
1
Câu 114. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 2 < m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
Câu 115. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {4; 3}.
√
√
x
+
3
+
6−
Câu 116.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
√
√
√x
A. 2 3.
B. 3 2.
C. 2 + 3.
D. {3; 5}.
D. 3.
Câu 117. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Khơng thay đổi.
B. Giảm đi n lần.
C. Tăng lên n lần.
D. Tăng lên (n − 1) lần.
Câu 118.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
1
A.
dx = ln |x| + C, C là hằng số.
B.
0dx = C, C là hằng số.
x
Z
Z
xα+1
α
C.
x dx =
+ C, C là hằng số.
D.
dx = x + C, C là hằng số.
α+1
2n + 1
Câu 119. Tính giới hạn lim
3n + 2
3
1
2
A. .
B. .
C. 0.
D. .
2
2
3
Trang 9/11 Mã đề 1
Câu 120. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 11 cạnh.
C. 10 cạnh.
D. 12 cạnh.
Câu 121. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 3.
C. 4.
D. 5.
Câu 122. ZCho hai hàm Zy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f 0 (x)dx =
A. Nếu
Z
B. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 123. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. aα+β = aα .aβ .
B. aαβ = (aα )β .
C. β = a β .
D. aα bα = (ab)α .
a
Câu 124. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 3.
C. 2.
D. 4.
x−1 y z+1
Câu 125. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. 2x + y − z = 0.
C. −x + 6y + 4z + 5 = 0.
D. 10x − 7y + 13z + 3 = 0.
2
4
3
Câu 126. Cho z √
là nghiệm của phương trình
√ x + x + 1 = 0. Tính P = z + 2z − z
−1 + i 3
−1 − i 3
.
B. P =
.
C. P = 2i.
D. P = 2.
A. P =
2
2
Câu 127. Tính thể tích khối lập phương biết tổng diện tích√tất cả các mặt bằng 18.
A. 8.
B. 9.
C. 3 3.
D. 27.
!2x−1
!2−x
3
3
Câu 128. Tập các số x thỏa mãn
≤
là
5
5
A. (+∞; −∞).
B. [3; +∞).
C. (−∞; 1].
D. [1; +∞).
Câu 129. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
A. 8, 16, 32.
B. 6, 12, 24.
C. 2 3, 4 3, 38.
D. 2, 4, 8.
3
2
x
Câu 130. [2]
√ Tìm m để giá trị lớn nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8√
A. m = ± 3.
B. m = ±3.
C. m = ±1.
D. m = ± 2.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
B
2. A
3.
B
4.
C
5.
7.
6.
C
10. A
D
11.
B
15. A
12.
C
14.
C
16. A
D
17.
19.
B
8.
B
9. A
13.
C
B
20.
21.
C
18.
D
23. A
B
22.
D
24.
D
D
25.
D
26.
27.
D
28.
C
29.
D
30.
C
31. A
32. A
33.
C
34.
35.
C
36.
37.
D
38. A
39.
D
40. A
41.
B
42.
43.
D
45.
47.
C
B
44.
46.
C
D
B
48.
B
49. A
D
50. A
51.
53.
B
C
52. A
B
54.
55. A
56.
57. A
58. A
59.
C
60.
C
B
C
62.
D
64.
D
65. A
66.
D
67. A
68. A
61.
63.
B
D
1
69.
C
70. A
71.
C
72.
73.
C
74. A
75. A
76.
77. A
78. A
79.
80.
B
D
81.
83.
B
C
84.
86. A
C
87. A
88. A
D
89.
91.
90.
C
93. A
D
95.
97.
D
82. A
B
85.
C
B
92.
C
94.
C
96. A
B
98. A
99. A
100. A
101.
102.
D
103. A
D
104.
B
105.
D
106.
B
107.
D
108.
B
109.
B
110.
111.
B
112.
B
114.
B
116.
B
113.
C
115.
117.
D
B
119.
D
D
118.
C
120.
C
121.
C
122.
D
123.
C
124.
D
126.
D
128.
D
130.
D
125.
D
127.
129.
C
B
2