TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Giá trị của lim (3x2 − 2x + 1)
x→1
A. +∞.
B. 3.
Câu 2. √
Thể tích của tứ diện đều cạnh
√ bằng a
a3 2
a3 2
.
B.
.
A.
2
12
C. 2.
D. 1.
√
a3 2
C.
.
6
√
a3 2
D.
.
4
Câu 3. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 4.
B. 10.
C. 12.
D. 11.
2
Câu 4. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 2.
B. 4.
C. 5.
D. 3.
Câu 5. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 8.
D. 30.
C. 20.
Câu 6. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
√
A. y = log 41 x.
B. y = loga x trong đó a = 3 − 2.
C. y = log √2 x.
D. y = log π4 x.
Câu 7. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 3
a3 6
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
48
24
8
24
Câu 8. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều đúng.
C. Chỉ có (II) đúng.
D. Cả hai đều sai.
Câu 9. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 10. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 4.
C. ln 14.
D. ln 12.
log2 240 log2 15
Câu 11. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. 1.
B. −8.
C. 4.
D. 3.
Câu 12. Tính lim
x→1
A. −∞.
x3 − 1
x−1
B. 3.
C. +∞.
D. 0.
Trang 1/10 Mã đề 1
Câu 13. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
1
C. lim k = 0.
n
Câu 14. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 6.
B. lim qn = 0 (|q| > 1).
1
D. lim = 0.
n
C. 8.
D. 10.
Câu 15. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 2, 25 triệu đồng.
C. 2, 20 triệu đồng.
D. 3, 03 triệu đồng.
Câu 16. Tứ diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {3; 4}.
D. {5; 3}.
Câu 17. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (2; 2).
C. (0; −2).
!4x
!2−x
3
2
≤
là
Câu 18. Tập các số x thỏa mãn
3 # 2
"
!
#
2
2
2
A. −∞; .
B. −∞; .
C. − ; +∞ .
5
3
3
!
2
D.
; +∞ .
5
Câu 19. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 12.
D. 30.
C. 20.
Câu 20. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (1; 2).
C. [1; 2].
D. (−1; −7).
"
D. (−∞; +∞).
Câu 21. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a
a 3
A. .
B. a.
C. .
D.
.
3
2
2
Câu 22. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog
A. 5.
B. 25.
Câu 23. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.
C.
√
a
5
√
bằng
5.
C. Khối 20 mặt đều.
D.
1
.
5
D. Khối 12 mặt đều.
Câu 24. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tam giác.
d = 60◦ . Đường chéo
Câu 25. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
2a3 6
a3 6
4a3 6
3
.
B. a 6.
C.
.
D.
.
A.
3
3
3
Câu 26. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 2.
C. 3.
D. 4.
Trang 2/10 Mã đề 1
1
1
1
Câu 27. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
A. 1.
B. 2.
!
C. 0.
D.
3
.
2
Câu 28.! Dãy số nào sau đây có giới
!n hạn là 0?
n
1
4
A.
.
B.
.
3
e
!n
!n
5
5
C.
.
D. − .
3
3
√
Câu 29. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vô số.
C. 64.
D. 62.
Câu 30. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = 10.
C. P = 21.
D. P = −10.
Câu 31. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
.
B. 10a3 .
C. 20a3 .
D. 40a3 .
A.
3
x
Câu 32. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
1
3
3
A. .
B. .
C.
.
D. 1.
2
2
2
Câu 33. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
23
1637
1079
.
B.
.
C.
.
D.
.
A.
4913
4913
68
4913
Câu 34. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).
B. (I) và (II).
C. (I) và (III).
D. Cả ba mệnh đề.
Câu 35. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng 2n+1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 36. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 20, 128 triệu đồng. C. 70, 128 triệu đồng. D. 3, 5 triệu đồng.
x−1 y z+1
Câu 37. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 10x − 7y + 13z + 3 = 0.
C. 2x − y + 2z − 1 = 0.
D. 2x + y − z = 0.
Trang 3/10 Mã đề 1
Câu 38. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. 4.
C. −4.
D. −2.
Câu 39. [1] Tập
!
! xác định của hàm số y! = log3 (2x + 1) là
1
1
1
A. −∞; − .
; +∞ .
B. −∞; .
C.
2
2
2
!
1
D. − ; +∞ .
2
Câu 40. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
S .ABCD là
3
3
3
4a 3
2a 3
2a3
4a
.
B.
.
C.
.
D.
.
A.
3
3
3
3
!
1
1
1
Câu 41. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. .
C. +∞.
D. 2.
2
2
Câu 42. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Bốn cạnh.
C. Ba cạnh.
D. Hai cạnh.
Câu 43. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là
√
√
A. 6, 12, 24.
B. 8, 16, 32.
C. 2, 4, 8.
D. 2 3, 4 3, 38.
Câu 44. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng
√
√
√
√
a 2
a 2
.
C. a 2.
.
A. a 3.
B.
D.
2
3
ln x p 2
1
Câu 45. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
1
8
A. .
B. .
C. .
D. .
3
3
9
9
2x + 1
Câu 46. Tính giới hạn lim
x→+∞ x + 1
1
A. −1.
B. 2.
C. 1.
D. .
2
!
5 − 12x
Câu 47. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. Vơ nghiệm.
B. 3.
C. 1.
D. 2.
Câu 48. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 3.
C. 2.
D. 4.
2
2
sin x
Câu 49. [3-c]
+ 2cos x lần
√ Giá trị nhỏ nhất và giá trị lớn nhất của hàm√số f (x) = 2
√ lượt là
A. 2 và 2 2.
B. 2 và 3.
C. 2 và 3.
D. 2 2 và 3.
Câu 50. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 51. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Trang 4/10 Mã đề 1
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey − 1.
Câu 52. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey + 1.
Câu 53. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 24.
C. 21.
D. 23.
Câu 54. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −1.
C. m = −3.
D. m = 0.
x+2
Câu 55. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.
B. Vô số.
C. 1.
D. 3.
Câu 56. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp đôi.
C. Tăng gấp 8 lần.
D. Tăng gấp 4 lần.
Câu 57. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m ≥ 0.
C. m > −1.
D. m > 1.
Câu 58. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√ là
√
3
3
3
3
4a 3
a 3
8a 3
8a 3
.
B.
.
C.
.
D.
.
A.
9
9
9
3
Câu 59. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 1.
C. 3.
√
2
Câu 60.
√ Xác định phần ảo của số phức z = ( 2 + 3i)
A. 6 2.
B. −7.
C. 7.
D. 2.
√
D. −6 2.
Câu 61. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. 1.
D. Vô nghiệm.
Câu 62. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (1; 0; 2).
C. ~u = (2; 1; 6).
D. ~u = (3; 4; −4).
Câu 63. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 7 năm.
C. 10 năm.
D. 8 năm.
Câu 64. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
8
12
4
Câu 65. Hàm số y =
A. x = 3.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 1.
C. x = 0.
D. x = 2.
Trang 5/10 Mã đề 1
Câu 66. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 13 năm.
D. 10 năm.
Câu 67. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 68. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 24.
m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
C. S = 32.
D. S = 135.
Câu 69. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
B. 9.
C. .
D. 6.
A. .
2
2
Câu 70. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. Vô nghiệm.
D. 1.
Câu 71. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 8.
x2 − 5x + 6
Câu 72. Tính giới hạn lim
x→2
x−2
A. −1.
B. 1.
C. 6.
D. 10.
C. 5.
D. 0.
Câu 73. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ min |z − 1 − i|.
√ thức |z − 1 + 3i| = 3. Tìm
D. 2.
A. 2.
B. 1.
C. 10.
Câu 74. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R \ {1}.
C. D = (0; +∞).
D. D = R.
Câu 75. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 3 lần.
Câu 76. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Hai hình chóp tứ giác.
1
Câu 77. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 0 ≤ m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 2 < m ≤ 3.
Câu 78. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là
√
3
a 3
a3 3
a3
3
A.
.
B. a .
C.
.
D.
.
6
2
3
Câu 79. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
B.
dx = log |u(x)| + C.
u(x)
Trang 6/10 Mã đề 1
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 80. Tính lim
x→+∞
A. 1.
x−2
x+3
B. 2.
C. −3.
Câu 81. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. 13.
C. Không tồn tại.
2
D. − .
3
D. 9.
Câu 82. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
√
√
2 3
A.
.
B. 2.
C. 3.
D. 1.
3
Câu 83. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 84. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 85. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng
√
√
√
20 3
14 3
A.
.
B. 6 3.
.
C. 8 3.
D.
3
3
1 − 2n
Câu 86. [1] Tính lim
bằng?
3n + 1
2
2
1
A. .
B. − .
C. 1.
D. .
3
3
3
Câu 87. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {4; 3}.
D. {3; 3}.
Câu 88. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.
8
4
2
Câu 89. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
A. 68.
B. 5.
C.
.
D. 34.
17
Câu 90. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. R.
C. (−∞; 1).
2−n
Câu 91. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. −1.
C. 0.
D. (2; +∞).
D. 1.
Câu 92. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 4).
C. (1; 3; 2).
D. (2; 4; 6).
Trang 7/10 Mã đề 1
1
Câu 93. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = 4.
C. m = −3, m = 4.
D. m = −3.
Câu 94. Tính thể tích khối lập phương biết tổng diện tích √
tất cả các mặt bằng 18.
A. 8.
B. 9.
C. 3 3.
D. 27.
√3
Câu 95. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
C. −3.
D. − .
A. 3.
B. .
3
3
√
Câu 96. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a
3a 38
3a 58
a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 97. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là 3, phần ảo là −4.
√
Câu 98. Cho chóp S .ABCD có đáy ABCD là hình vuông cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √
√
√
a3 3
a3 3
a3
3
B.
.
C.
.
D.
.
A. a 3.
3
12
4
Câu 99. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 3
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
12
4
6
Câu 100. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (1; +∞).
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 101. Cho hình chóp S .ABC có BAC
(ABC). Thể
√là
√
√ tích khối chóp S .ABC
3
3
√
a 2
a3 3
a 3
.
B.
.
C.
.
D. 2a2 2.
A.
12
24
24
Câu 102. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
D.
.
c+2
c+1
c+2
c+3
Câu 103. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m > 0.
C. m < 0.
D. m , 0.
Câu 104. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 10.
C. 3.
D. 12.
Câu 105. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim− f (x) = f (b).
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
Câu 106. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
Trang 8/10 Mã đề 1
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.
B. 4.
C. 3.
D. 1.
Câu 107. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
Câu 108. Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; −3; 3).
C. A0 (−3; 3; 3).
D. A0 (−3; 3; 1).
Câu 109. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 5 mặt.
D. 6 mặt.
Câu 110. Khối lập phương thuộc loại
A. {3; 3}.
B. {3; 4}.
D. {4; 3}.
C. {5; 3}.
Câu 111. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
6
12
36
Câu 112. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = − loga 2.
B. log2 a = loga 2.
C. log2 a =
.
D. log2 a =
.
log2 a
loga 2
Câu 113. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Khơng có.
C. Có một.
D. Có một hoặc hai.
Câu 114. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối
√ chóp S .ABMN là 3 √
√
√
3
2a 3
a 3
4a3 3
5a3 3
A.
.
B.
.
C.
.
D.
.
3
2
3
3
√
Câu 115. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
"
!
5
5
A. 2; .
B. [3; 4).
C. (1; 2).
D.
;3 .
2
2
Câu 116. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 8.
C. 4.
D. 3.
x = 1 + 3t
Câu 117. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi
z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương trình là
Trang 9/10 Mã đề 1
x = −1 + 2t
A.
y = −10 + 11t
z = −6 − 5t
.
x = 1 + 3t
B.
y = 1 + 4t
z = 1 − 5t
.
x = −1 + 2t
C.
y = −10 + 11t
z = 6 − 5t
.
x = 1 + 7t
D.
y=1+t
z = 1 + 5t
.
Câu 118. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −3 ≤ m ≤ 3.
C. −2 ≤ m ≤ 2.
D. m ≤ 3.
2
x
Câu 119. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
D. M = e, m = .
A. M = e, m = 1.
B. M = e, m = 0.
C. M = , m = 0.
e
e
Câu 120. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 − 3n
n2 + n + 1
1 − 2n
A. un =
.
B.
u
=
.
C.
u
=
.
D. un =
.
n
n
2
2
2
5n − 3n
n
(n + 1)
5n + n2
2
Câu 121. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
B.
.
C. 3 .
A. 2 .
3
e
2e
e
D.
1
√ .
2 e
Câu 122. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình
! chiếu của B, C lên các !cạnh AC, AB. Tọa độ hình chiếu của A lên BC là !
5
7
8
A.
; 0; 0 .
B.
; 0; 0 .
C. (2; 0; 0).
D.
; 0; 0 .
3
3
3
Câu 123. Cho hàm số y = x3 − 2x2 + x +!1. Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng ; 1 .
3
3
!
1
D. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng −∞; .
3
Z 3
x
a
a
Câu 124. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = 4.
C. P = 16.
D. P = −2.
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 125. Cho
x2
1
A. 0.
B. −3.
C. 3.
D. 1.
2n − 3
bằng
Câu 126. Tính lim 2
2n + 3n + 1
A. 1.
B. 0.
C. +∞.
D. −∞.
Câu 127. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = S h.
B. V = S h.
C. V = 3S h.
2
Câu 128. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 10 mặt.
1
D. V = S h.
3
D. 8 mặt.
Câu 129. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n3 lần.
D. 2n2 lần.
Câu 130. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 24 m.
C. 8 m.
D. 16 m.
- - - - - - - - - - HẾT- - - - - - - - - Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
C
2.
B
3.
C
4.
B
5.
C
6.
C
8.
C
C
D
7.
9.
B
10.
11.
B
12.
13.
B
14.
15. A
16.
C
17.
B
20.
21.
B
22.
25.
D
B
C
D
B
24. A
26.
B
27. A
D
28. A
29.
D
31.
30. A
32.
C
33.
D
35.
37.
C
18.
19.
23.
B
C
34.
B
36.
B
39.
D
40. A
41.
D
42.
43. A
45.
D
49.
D
44.
B
46.
B
D
50.
C
52.
53. A
54. A
55. A
56.
57.
C
48.
C
51.
D
38.
B
47.
D
C
B
C
58. A
C
59.
B
60. A
61.
B
62.
B
64.
B
63. A
65.
66. A
B
67. A
68.
1
C
69. A
70.
C
71.
73.
72. A
74.
B
75. A
76.
77.
79.
B
D
D
B
78.
C
80. A
B
81. A
82.
83. A
84. A
B
85.
B
86.
B
87.
B
88.
B
C
89.
91.
90. A
93.
C
94.
C
C
95.
B
96.
97.
B
98.
99. A
101.
D
92.
B
B
100. A
B
103.
D
102.
C
104.
C
105.
C
106.
C
107.
C
108.
C
109. A
111.
C
110.
D
112.
D
113.
D
114.
115.
D
116.
117.
119.
118.
C
B
121. A
B
D
B
120.
D
122.
D
123.
B
124.
B
125.
B
126.
B
127.
129.
D
128. A
130.
B
2
D