Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 2 (665)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.5 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 6 mặt.
C. 8 mặt.

D. 9 mặt.

Câu 2. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 1.

C. +∞.

B. 2.

D. 0.
x+2
Câu 3. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?


A. 3.
B. 2.
C. Vô số.
D. 1.
Câu 4. Cho số phức z thỏa mãn |z +√3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 17.
B. |z| = 17.
C. |z| = 10.
Câu 5. [1] Đạo hàm của hàm số y = 2 x là
1
.
B. y0 = 2 x . ln 2.
A. y0 =
ln 2

C. y0 =

1
2 x . ln

x

.

D. |z| =


10.

D. y0 = 2 x . ln x.


Câu 6. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường thẳng
BB0 và AC 0 bằng
ab
1
ab
1
A. √
.
B. √
.
C. 2
.
.
D. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 7. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 7.

B. 9.

C. 5.

D. 0.


Câu 8. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m ≥ 3.
D. m > 3.
log(mx)
Câu 9. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0 ∨ m = 4.
C. m < 0.
D. m ≤ 0.
t
9
Câu 10. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. 2.
C. Vô số.
D. 0.
Câu 11. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó không rút tiền ra?
A. 10 năm.

B. 13 năm.
C. 11 năm.
D. 12 năm.
Câu 12. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. −2.
C. 2.

D. −4.

Câu 13. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

f (x) a
= .
A. lim
x→+∞ g(x)
b
C. lim [ f (x) − g(x)] = a − b.
x→+∞

x→+∞

B. lim [ f (x) + g(x)] = a + b.
x→+∞

D. lim [ f (x)g(x)] = ab.
x→+∞

Trang 1/10 Mã đề 1



0 0 0 0
0
Câu 14.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
2
7
3
2
5
Câu 15. Tính lim
n+3
A. 0.
B. 3.
C. 1.
D. 2.


Câu 16. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−∞; 0) và (1; +∞). C. (0; 1).
D. (−1; 0).
Câu 17. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Chỉ có (II) đúng.

C. Cả hai câu trên sai.

D. Cả hai câu trên đúng.

Câu 18. [2] Cho hàm số f (x) = ln(x + 1). Giá trị f (1) bằng
1
ln 2
.
D. .
A. 1.
B. 2.

C.
2
2
x−1
Câu 19. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB
√ đều ABI có hai đỉnh A, √
√ có độ dài bằng
A. 6.
B. 2 2.
C. 2 3.
D. 2.
! x3 −3mx2 +m
1
Câu 20. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m = 0.
C. m ∈ (0; +∞).
D. m ∈ R.
4

0

Câu 21. Giá trị của lim (3x2 − 2x + 1)

x→1
A. +∞.
B. 2.

C. 1.

D. 3.

Câu 22. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. Khối bát diện đều.

Câu 23. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Bốn mặt.
C. Năm mặt.

D. Ba mặt.

Câu 24. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17

A. 34.
B. 5.
C. 68.
D.
.
17
Câu 25. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .
B. 3.
C. 2e + 1.
D. 2e.
e
Z 1
Câu 26. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
1
.
D. .
2
4
3
2
x
Câu 27. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x + (m√ + 1)2 trên [0; 1] bằng 2√
A. m = ±1.
B. m = ±3.

C. m = ± 3.
D. m = ± 2.
A. 1.

B. 0.

C.

Trang 2/10 Mã đề 1


Câu 28. Phần thực√và phần ảo của số √
phức z =
A. Phần thực là 2, √
phần ảo là 1 − √
3.
C. Phần thực là 1 − 2, phần ảo là − 3.




2 − 1 − 3i lần lượt √l

B. Phần thực là √2 − 1, phần ảo là −√ 3.
D. Phần thực là 2 − 1, phần ảo là 3.

Câu 29. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √


a3 3
a3 3
a3 3
a3
A.
.
B.
.
C.
.
D.
.
12
8
4
4
Câu 30. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
B.
D.
A. a 2.
.
C. 2a 2.
.

2
4
8
Câu 31. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 81.
C. 96.
D. 64.
Câu 32.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
A.
Z
B.

[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.

[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
C.

tan x + m
nghịch biến trên khoảng
Câu 33. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .
4
A. [0; +∞).
B. (1; +∞).
C. (−∞; −1) ∪ (1; +∞). D. (−∞; 0] ∪ (1; +∞).
Câu 34. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = ln 10.

B. f 0 (0) = 10.

C. f 0 (0) = 1.

D. f 0 (0) =

1
.
ln 10

!
x+1
Câu 35. [3] Cho hàm số f (x) = ln 2017 − ln

. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
2016
4035
.
B.
.
C.
.
D. 2017.
A.
2018
2018
2017
Câu 36. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



a b2 + c2
c a2 + b2
b a2 + c2
abc b2 + c2
A. √
.
B. √
.

C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 37.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:

3
3
3
3
A.
.
B.
.
C. .
D.
.
12
4
4
2
Câu 38. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −3 ≤ m ≤ 3.
C. −2 ≤ m ≤ 2.

D. m ≥ 3.
Câu 39. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là


A. 6, 12, 24.
B. 2, 4, 8.
C. 8, 16, 32.
D. 2 3, 4 3, 38.
Trang 3/10 Mã đề 1


Câu 40. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 20, 128 triệu đồng. C. 70, 128 triệu đồng. D. 50, 7 triệu đồng.
Câu 41. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Hai khối chóp tứ giác.
Câu 42. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
B. 12.
C. 18.
D. 27.
A.

2
Câu 43. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {5; 3}.
C. {3; 4}.
D. {4; 3}.
Câu 44. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 1202 m.
C. 2400 m.
D. 6510 m.
Câu 45. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3 3
a3
3
.
B. a .
C.
.
D.
.
A.
3
6
2

Câu 46. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 2.
C. 5.
D. 3.
Câu 47. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
Câu 48. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. 1 nghiệm.
C. Vô nghiệm.
D. 2 nghiệm.
x
9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 49. [2-c] Cho hàm số f (x) = x
9 +3
1
A. 1.
B. .
C. 2.
D. −1.
2

Câu 50. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể

theo a.
√ tích khối chóp S .ABC3 √


3
a 2
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
36
18
6
!
5 − 12x
Câu 51. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 1.
B. 2.
C. 3.
D. Vô nghiệm.

Câu 52. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = [2; 1].
C. D = (−2; 1).
2

D. D = R.

Câu 53. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {5}.
C. {2}.
D. {5; 2}.
Câu 54. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) có giá trị nhỏ nhất trên K.

B. f (x) xác định trên K.
D. f (x) liên tục trên K.
Trang 4/10 Mã đề 1


Câu 55. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 10.
C. ln 14.
D. ln 4.
Câu 56. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.

Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (II) đúng.

C. Cả hai đều sai.

D. Chỉ có (I) đúng.

Câu 57. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 8.

C. 10.

D. 6.

Câu 58. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là −3, phần ảo là −4.
Câu 59. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. Khối 20 mặt đều.

2
Câu 60. Thể tích của khối lập phương


cạnh
bằng
a

3

2a 2
.
C. V = 2a3 .
A. V = a3 2.
B.
3

D. Khối bát diện đều.

D. 2a3 2.

Câu 61. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. log2 13.
C. 2020.
D. 13.
[ = 60◦ , S O
Câu 62. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S

2a 57
a 57

a 57
.
B.
.
C.
.
D. a 57.
A.
19
19
17
Câu 63. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. R.

D. (2; +∞).

Câu 64. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B. a3 .
C.
.
D.
.

A.
24
6
12
Câu 65. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. −e.
B. − 2 .
C. − .
e
e
2n − 3
Câu 66. Tính lim 2
bằng
2n + 3n + 1
A. 1.
B. +∞.
C. −∞.

D. −

1
.
2e

D. 0.

Câu 67. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng

A. 16π.
B. 32π.
C. V = 4π.
D. 8π.

Câu 68. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. 63.
D. Vô số.
Trang 5/10 Mã đề 1


Câu 69. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 3, 55.
C. 20.
D. 15, 36.
Câu 70. Khối lập phương thuộc loại
A. {3; 3}.
B. {3; 4}.

C. {4; 3}.





D. {5; 3}.

− 4.2 x+
− 3m + 4 = 0 có nghiệm
Câu 71. [12215d] Tìm m để phương trình 4 x+
3
3
9
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
A. m ≥ 0.
B. 0 ≤ m ≤ .
4
4
4
Câu 72. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 3}.
D. {4; 3}.
mx − 4
Câu 73. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 34.
B. 45.
C. 67.
D. 26.
1−x2


1−x2

Câu 74. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −6.
B. 6.
C. 5.
2

D. −5.

Câu 75. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục ảo.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục thực.
2
Câu 76. Tính
√4 mơ đun của số phức z√biết (1 + 2i)z = 3 + 4i. √
B. |z| = 5.
C. |z| = 2 5.
A. |z| = 5.

D. |z| = 5.

Câu 77. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ là

√ Thể tích khối chóp S 3.ABC

3
a 3
a3 3
a3 2
a 3
.
B.
.
C.
.
D.
.
A.
4
12
6
12
Câu 78. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




2a 3
a 3
a 3
B.
A. a 3.
.
C.

.
D.
.
2
2
3
Câu 79. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 3.
B. 4.
C. 8.
D. 6.
Câu 80. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
C. 1.
D.
.
A. 2.
B. 3.
3

Câu 81. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 12.
B. 11.
C. 10.
D. 4.
!
3n + 2
2
Câu 82. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 5.
C. 3.
D. 2.
Trang 6/10 Mã đề 1


2

Câu 83. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 8.
C. 6.

D. 5.

Câu 84. Cho hàm số y = x3 − 2x2 + x + 1.

! Mệnh đề nào dưới đây đúng?
!
1
1
B. Hàm số nghịch biến trên khoảng ; 1 .
A. Hàm số đồng biến trên khoảng ; 1 .
3
3
!
1
C. Hàm số nghịch biến trên khoảng −∞; .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 85. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(4; −8).
C. A(−4; 8).
D. A(−4; −8)(.
Câu 86. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
8
7
5
; 0; 0 .
B.
; 0; 0 .
C.

; 0; 0 .
D. (2; 0; 0).
A.
3
3
3
Câu 87. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m < 0.
C. m > 0.
D. m = 0.


4n2 + 1 − n + 2
Câu 88. Tính lim
bằng
2n − 3
3
B. 2.
C. 1.
D. +∞.
A. .
2
Câu 89. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
q

Câu 90. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [−1; 0].
C. m ∈ [0; 2].
D. m ∈ [0; 1].
Câu 91. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 1.
C. e.

D. 4 − 2 ln 2.

Câu 92.
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
k f (x)dx = f

A.
Z
C.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.


f (x)g(x)dx =

B.
Z
D.

f (x)dx g(x)dx.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

Câu 93. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 27cm3 .
C. 64cm3 .
D. 46cm3 .
x−1 y z+1
Câu 94. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 2x − y + 2z − 1 = 0.
C. 10x − 7y + 13z + 3 = 0.

D. 2x + y − z = 0.
Câu 95. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 1.
B. 5.
C. 2.
D. 3.
Trang 7/10 Mã đề 1


Câu 96. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (−∞; +∞).
C. (1; 2).
D. [1; 2].
a
1
Câu 97. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 7.
C. 1.
D. 4.
Câu 98. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Hai mặt.
C. Một mặt.
Câu 99. [2] Tổng các nghiệm của phương trình 9 − 12.3 + 27 = 0 là
A. 10.

B. 12.
C. 27.
log7 16
bằng
Câu 100. [1-c] Giá trị của biểu thức
15
log7 15 − log7 30
A. 4.
B. −4.
C. 2.
x

D. Bốn mặt.

x

D. 3.

D. −2.

Câu 101. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 102. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A. 2, 25 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 22 triệu đồng.
D. 2, 20 triệu đồng.
Câu 103. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 30.

C. 20.

D. 10.
[ = 60◦ , S A ⊥ (ABCD).
Câu 104. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối chóp S .ABCD là


a3 2
a3 3
a3 2
3
.
B.
.
C. a 3.
.
D.
A.
12
4

6
Câu 105. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là −1, phần ảo là −4.
Câu 106. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 107. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
B.
dx = log |u(x)| + C.
u(x)
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 108. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. − < m < 0.
B. m > − .
C. m ≤ 0.
D. m ≥ 0.
4
4
2x + 1
Câu 109. Tính giới hạn lim

x→+∞ x + 1
1
A. 2.
B. 1.
C. −1.
D. .
2
Trang 8/10 Mã đề 1


Câu 110. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 4.

C. 8.

D. 5.

Câu 111.! Dãy số nào sau đây có !giới hạn là 0?
n
n
4
5
B.
.
A. − .
3
e

!n

5
C.
.
3

!n
1
D.
.
3

Câu 112. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).

Hai mặt bên
√ (S BC) và (S AD) cùng
√hợp với đáy một góc 303 .√Thể tích khối chóp S .ABCD
√ là
3
3
3
4a 3
8a 3
8a 3
a 3
A.
.
B.
.
C.
.

D.
.
9
9
3
9
Z 3
a
a
x
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 113. Cho I =

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = 28.
C. P = −2.
D. P = 4.
d = 60◦ . Đường chéo
Câu 114. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0






a3 6
2a3 6
4a3 6
3
.
B. a 6.
.
D.
.
A.
C.
3
3
3
Câu 115. ZCho hai hàmZy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f (x)dx =

A. Nếu
Z

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.

Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
B. Nếu

f 0 (x)dx =

g(x)dx thì f (x) = g(x), ∀x ∈ R.

Z

Câu 116. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 3.
B. 1.
C. 7.
D. 2.
Câu 117. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 118. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
S .ABCD là
3
3
3
4a

4a 3
2a 3
2a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 119. Dãy số nào có giới hạn bằng 0?
!n
n3 − 3n
−2
A. un =
.
B. un =
.
n+1
3

C. un = n − 4n.

Câu 120. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.

B. 1.
C. 0.
2
x − 5x + 6
Câu 121. Tính giới hạn lim
x→2
x−2
A. −1.
B. 1.
C. 5.

2

!n
6
D. un =
.
5
D. 2.

D. 0.
Trang 9/10 Mã đề 1


Câu 122. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 10.

C. 6.


D. 8.

Câu 123.
thức nào sau đây khơng có nghĩa
√ Biểu
0
A. (− 2) .
B. (−1)−1 .

C. 0−1 .

D.


−1.

−3

Câu 124. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 125. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 3
a3 5
a3 5
a3 5

A.
.
B.
.
C.
.
D.
.
12
4
6
12
x−2
Câu 126. Tính lim
x→+∞ x + 3
2
D. 2.
A. 1.
B. −3.
C. − .
3
2
Câu 127. Cho z là nghiệm của phương trình
= z4 + 2z3 − z
√ x + x + 1 = 0. Tính P √
−1 + i 3
−1 − i 3
.
C. P =
.

D. P = 2i.
A. P = 2.
B. P =
2
2
cos n + sin n
Câu 128. Tính lim
n2 + 1
A. 1.
B. −∞.
C. +∞.
D. 0.
log2 240 log2 15

+ log2 1 bằng
Câu 129. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. 4.
B. −8.
C. 1.
D. 3.
Câu 130. [1]! Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A.
; +∞ .
B. − ; +∞ .
C. −∞; .

2
2
2

!
1
D. −∞; − .
2

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D

1.

2.

D
D

3.

B


4.

5.

B

6. A

7.

B

8.

9.

B

10.

B

12.

B

D

11.
13. A


14.

15. A

16.

17.

D

19.
21.

C

C
D

18.

B

20.

B

22. A

B


23.
25.

C

D

24.

D

26.

B

27. A

C

28.

B

29.

B

30.


B

31.

B

32.

B

33.

B

34. A

35.

B

36. A

37.

B

38.

B


40.

B

39. A
41.

B

42.
44.

43. A
45.
47.

C

D

D

46. A
48.

B

D

49. A


50.

51. A

52.

D

54.

D

53.

B

55.

C

57.

56.
D

60.

63. A
68.


D

62. A

B

65.

B

58. A

59. A
61.

C

D
B
1

64.

D

66.

D


69.

D


72.

71.

C

70.
B

73. A
D

74.

77.

78.

D

81. A

82. A

83. A


84.

B

85. A

86.

B

87. A

B

91.

92.

B

93.
C

100.

97.
D

B


102.
104.

C

D

101.

D

B

109. A

110. A

111.

D
D

112.

B

113.

114.


B

115. A

116.

D

117.

118. A

119.

D
B

121. A

C

122.

D

123.

C


125.

C

126. A

D

127. A

128.
130.

B

99.

107.

B

124.

C

105. A
D

120.


B

103. A

B

106.
108.

C

95.

B

98.

D

89.

C

90.

96.

B

79. A


80. A

94.

C

75.

76. A

88.

D

D

129.

B

2

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×