Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thptqg 2 (675)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.55 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 − 2e
1 + 2e
1 + 2e
.
B. m =
.
C. m =
.
D. m =
.
A. m =
4e + 2
4 − 2e
4e + 2
4 − 2e
Câu 2. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD. Cho
hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 16π.
C. 32π.


D. 8π.
3
2
Câu 3. [2] Tìm m để giá trị lớn nhất của
+ 1)2 x trên [0; 1] bằng 8
√ hàm số y = 2x + (m √
A. m = ±1.
B. m = ± 3.
C. m = ± 2.
D. m = ±3.

Câu 4. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
1
C. lim √ = 0.
n

B. lim qn = 1 với |q| > 1.
D. lim un = c (Với un = c là hằng số).
2

Câu 5. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 1 − log3 2.
C. 3 − log2 3.
Câu 6. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) có giá trị lớn nhất trên K.


D. 2 − log2 3.

B. f (x) liên tục trên K.
D. f (x) xác định trên K.

Câu 7. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 + 1; m = 1.
C. M = e−2 + 2; m = 1.
D. M = e−2 − 2; m = 1.
1 − n2
bằng?
Câu 8. [1] Tính lim 2
2n + 1
1
1
1
A. − .
B. 0.
C. .
D. .
2
3
2
!2x−1
!2−x
3
3



Câu 9. Tập các số x thỏa mãn
5
5
A. (+∞; −∞).
B. [3; +∞).
C. [1; +∞).
D. (−∞; 1].
x+1
Câu 10. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. 1.
B. .
C. .
D. 3.
4
3
Câu 11. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4





a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
36
6
12
24



x=t




Câu 12. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)





z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
Trang 1/10 Mã đề 1


9
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
9
2
2
2
C. (x + 3) + (y + 1) + (z − 3) = .
4
2n − 3
Câu 13. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. −∞.

9
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
4
9
2
2

2
D. (x − 3) + (y + 1) + (z + 3) = .
4

C. 0.
D. 1.
log(mx)
Câu 14. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0.
C. m ≤ 0.
D. m < 0 ∨ m = 4.
Câu 15. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e2 .
C. 2e4 .
D. −2e2 .
Câu 16. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
5a
8a
a
A.
.
B.
.

C.
.
D. .
9
9
9
9
Câu 17. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
B. − 2 .
A. − .
C. −e.
2e
e

1
D. − .
e

Câu 18. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




20 3
14 3
.

D.
.
A. 8 3.
B. 6 3.
C.
3
3
Câu 19. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n2 lần.
C. 2n3 lần.
D. n3 lần.
Câu 20. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.

Câu 21. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 3
πa3 6
A. V =

.
B. V =
.
C. V =
.
D. V =
.
6
2
3
6
Câu 22. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
1
C. lim k = 0.
n

B. lim qn = 0 (|q| > 1).
D. lim un = c (un = c là hằng số).

Câu 23. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 1.
C. 5.


Câu 24.
Tìm

giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6−x


A. 3 2.
B. 2 3.
C. 3.
Câu 25. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = R \ {0}.

C. D = (0; +∞).

D. 2.
D. 2 +


3.


D. D = R.
Trang 2/10 Mã đề 1


Câu 26. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
2
1
9
1
B. .
C.
.
D.
.
A. .
5
5
10
10
Câu 27. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 9 mặt.
C. 6 mặt.
D. 3 mặt.
Câu 28. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. 1 + 2 sin 2x.
C. −1 + 2 sin 2x.

2n + 1
Câu 29. Tìm giới hạn lim
n+1
A. 2.
B. 1.
C. 0.

D. 3.

Câu 30. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 10 mặt.
C. 8 mặt.

D. 6 mặt.

D. −1 + sin x cos x.

Câu 31. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = x
.
B. y0 = 2 x . ln 2.
C. y0 = 2 x . ln x.
D. y0 =
.
2 . ln x
ln 2
Câu 32. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .

Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



2a3 3
4a3 3
a3 3
5a3 3
.
B.
.
C.
.
D.
.
A.
3
3
3
2
Câu 33. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. Cả ba câu trên đều sai.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Câu 34. Tìm m để hàm số y =
x+m
A. 67.
B. 26.
C. 45.
D. 34.
Câu 35. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1728
1079
23
A.
.
B.
.
C.
.
D.
.
4913
4913
4913
68
Câu 36. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 9 năm.
C. 7 năm.

D. 10 năm.
Câu 37.
!0 nào sau đây sai?
Z Mệnh đề
A.
f (x)dx = f (x).
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
2

Câu 38. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 7.
C. 8.

D. 5.
Trang 3/10 Mã đề 1




x2 + 3x + 5
x→−∞
4x − 1
1
1

A. .
B. − .
C. 1.
D. 0.
4
4
Câu 40. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
.
B. 2
.
D. √
.
A. √
.
C. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 39. Tính giới hạn lim

Câu 41. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|





12 17
A. 68.
B. 34.
C. 5.
D.
.
17
Câu 42. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. Cả ba mệnh đề.

C. (II) và (III).

D. (I) và (II).

x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
2016
C.

.
D.
.
2018
2017
!

Câu 43. [3] Cho hàm số f (x) = ln 2017 − ln
A. 2017.

B.

4035
.
2018

1

Câu 44. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = (−∞; 1).
C. D = R \ {1}.
!
1
1
1
Câu 45. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n

5
3
A. .
B. .
C. 2.
2
2
Câu 46. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 3.
C. 0.

D. D = R.

D. +∞.
D. 1.

Câu 47. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B.
.
C.

.
D. a 6.
3
6
2
π
Câu 48. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 3 3 + 1.
B. T = 4.
C. T = 2.
D. T = 2 3.
1
Câu 49. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 1.
C. 4.
D. 2.
Trang 4/10 Mã đề 1


d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 50. Cho hình chóp S .ABC có BAC

Thể tích√khối chóp S .ABC là



a3 3
a3 2
a3 3
2
A.
.
B.
.
C. 2a 2.
D.
.
12
24
24
x+1
Câu 51. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. 1.
D. .
6

2
3
x
y
Câu 52. [4-c] Xét các số thực dương x, y thỏa mãn 2 + 2 = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
C. 18.
D. 12.
A. 27.
B.
2
n−1
Câu 53. Tính lim 2
n +2
A. 2.
B. 3.
C. 1.
D. 0.
Câu 54. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 12 năm.
C. 13 năm.
D. 11 năm.
Câu 55. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.

B. 13.
C. 0.

D. Không tồn tại.

Câu 56.
f (x), g(x) liên
đề nào sai? Z
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Câu 57. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).

C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 58. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 8.

C. 10.

D. 6.

Câu 59. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 60. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
B. a 6.
C. a 3.
D.
.
A. 2a 6.
2
log 2x
Câu 61. [1229d] Đạo hàm của hàm số y =


x2
1
1 − 2 log 2x
1 − 4 ln 2x
1 − 2 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.
3
3
2x ln 10
x
2x ln 10
x ln 10
Câu 62. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
Trang 5/10 Mã đề 1


(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.


B. Khơng có câu nào C. Câu (II) sai.
D. Câu (I) sai.
sai.
Câu 63. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 64. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m < 3.
D. m > 3.
p
1
ln x
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 65. Gọi F(x) là một nguyên hàm của hàm y =
x
3
1
8
1
8
B. .
C. .
D. .
A. .
3
9
9
3

Câu 66. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.

A. |z| = 17.
B. |z| = 10.
C. |z| = 17.
D. |z| = 10.
Câu 67. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
B. −∞; .
C. −∞; − .
2
2
2

!
1
; +∞ .
D.
2

Câu 68.√Biểu thức nào sau đây không có nghĩa
B. (−1)−1 .
A. (− 2)0 .

D. 0−1 .


C.


−1.

−3

Câu 69. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 5.
C. V = 6.
D. V = 4.

Câu 70. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng


a 38
3a 38
3a
3a 58
A.
.
B.
.
C.

.
D.
.
29
29
29
29
x
Câu 71. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
3
3
1
A. 1.
B.
.
C. .
D. .
2
2
2
Câu 72. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

Câu 73. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (−∞; 6, 5).

C. [6, 5; +∞).

D. (4; 6, 5].

Câu 74. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. m ≥ 3.
C. −3 ≤ m ≤ 3.
D. m ≤ 3.
Câu 75. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 2 nghiệm.
C. 3 nghiệm.

D. 1 nghiệm.
Trang 6/10 Mã đề 1


Câu 76. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 160 cm2 .
Câu 77. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
A. 1.
B. .
C. 2.
2


D.

ln 2
.
2

Câu 78. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 7.
B. .
C.
.
D. 5.
2
2
Câu 79. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
23
5
13
A.
.
B. −
.
C. − .
D.
.

25
100
16
100
1
Câu 80. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 < m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.
1
Câu 81. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey − 1.
B. xy0 = ey + 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
Câu 82. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m ≥ 0.
C. m > 1.
D. m > 0.
Z 3
x
a
a

Câu 83. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = −2.
C. P = 4.
D. P = 28.

Câu 84. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 2 nghiệm.
B. Vô nghiệm.
C. 3 nghiệm.
D. 1 nghiệm.
log 2x
Câu 85. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1 − 2 log 2x
1
1 − 2 ln 2x
A. y0 =
.
B. y0 =
.
C. y0 = 3

.
D. y0 = 3
.
3
3
2x ln 10
x
x ln 10
2x ln 10
Câu 86. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 8.
C. 30.
D. 12.



x = 1 + 3t




Câu 87. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có

phương
 trình là











x
=
1
+
7t
x
=
1
+
3t
x
=
−1
+
2t
x = −1 + 2t

















A. 
.
B. 
C. 
y=1+t
y = 1 + 4t .
y = −10 + 11t . D. 
y = −10 + 11t .

















z = 1 + 5t
z = 1 − 5t
z = −6 − 5t
z = 6 − 5t
1
Câu 88. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; 3).
C. (1; +∞).
D. (−∞; 3).
Câu 89. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 12.

C. 30.

D. 20.
Trang 7/10 Mã đề 1


Câu 90. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =

log4 (x2 + y2 )?
A. 3.
B. Vô số.
C. 2.
D. 1.
Câu 91. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tam giác.
Câu 92.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
6
2


a3 2
C.
.
4



a3 2
D.
.
12

Câu 93. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 387 m.
C. 1587 m.
D. 25 m.
x2 − 5x + 6
Câu 94. Tính giới hạn lim
x→2
x−2
A. −1.
B. 0.
C. 1.
D. 5.
d = 30◦ , biết S BC là tam giác đều
Câu 95. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39

a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
13
26
9
16
Câu 96. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
B.
.
C.
.
D. a 2.
A. 2a 2.
4

2
Câu 97. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Hai cạnh.
C. Bốn cạnh.
D. Ba cạnh.
! x3 −3mx2 +m
1
Câu 98. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m , 0.
C. m ∈ R.
D. m = 0.
Câu 99. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 3.
C. 1.

D. Vô nghiệm.

Câu 100. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém môn Toán nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm môn Tốn là
10
20
20

40
C50
.(3)40
C50
.(3)20
C50
.(3)30
C50
.(3)10
A.
.
B.
.
C.
.
D.
.
450
450
450
450
Câu 101.
√ Thể tích của khối lăng
√ trụ tam giác đều có cạnh√bằng 1 là:
3
3
3
A.
.
B.

.
C.
.
4
12
2

D.

3
.
4
Trang 8/10 Mã đề 1


Câu 102. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

B. aαβ = (aα )β .
C. aα bα = (ab)α .
D. aα+β = aα .aβ .
A. β = a β .
a
log2 240 log2 15
Câu 103. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 4.
B. −8.

C. 1.
D. 3.
3
2
Câu 104. Giá
√ trị cực đại của hàm số√y = x − 3x − 3x + 2 √

A. −3 + 4 2.
B. 3 − 4 2.
C. 3 + 4 2.
D. −3 − 4 2.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 105. [3-1214d] Cho hàm số y =
x+2
tam giác
B thuộc (C), đoạn thẳng AB
√ đều ABI có hai đỉnh A, √
√ có độ dài bằng
A. 6.
B. 2 3.
C. 2 2.
D. 2.

Câu 106. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 107. Giá trị giới hạn lim (x2 − x + 7) bằng?

x→−1

A. 0.

B. 9.

C. 5.

D. 7.

[ = 60◦ , S O
Câu 108. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ A đến (S BC) bằng

√ với mặt đáy và S O = a.

a 57
a 57
2a 57
.
B.
.
C. a 57.
.
D.
A.
19
17
19

x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 109. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2).
C. (2; +∞).
D. (−∞; 2].
Câu 110. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC√là

√ với đáy và S C = a 3.3 √
3
a 3
a 6
a3 3
2a3 6
A.
.
B.

.
C.
.
D.
.
2
12
4
9
Câu 111. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a =
.
loga 2
log2 a
Câu 112. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối tứ diện.
C. Khối bát diện đều.
D. Khối lăng trụ tam giác.
12 + 22 + · · · + n2
Câu 113. [3-1133d] Tính lim
n3
2
1

A. .
B. +∞.
C. 0.
D. .
3
3
1
Câu 114. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2] ∪ [−1; +∞). C. −2 ≤ m ≤ −1.
D. (−∞; −2) ∪ (−1; +∞).
Câu 115. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối 12 mặt đều.

C. Khối bát diện đều.

D. Khối tứ diện đều.
Trang 9/10 Mã đề 1



Câu 116. Xác định phần ảo của số phức z = ( 2 + 3i)2

A. −7.
B. 7.
C. −6 2.



D. 6 2.
x−1 y z+1
= =

Câu 117. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. 2x + y − z = 0.
C. 2x − y + 2z − 1 = 0.
D. −x + 6y + 4z + 5 = 0.
Câu 118. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (1; 2).
C. (−∞; +∞).

D. [1; 2].

9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
9t + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. 2.
C. 0.
D. Vô số.


Câu 119. [4] Xét hàm số f (t) =

Câu 120. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 2.
C. y(−2) = −18.
D. y(−2) = 6.
Câu 121. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. [−3; 1].
C. [−1; 3].
D. (−∞; −3].
Câu 122. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 4.

C. 6.

D. 8.

Câu 123. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Cả ba đáp án trên.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
x−2

Câu 124. Tính lim
x→+∞ x + 3
2
A. − .
B. 1.
3
Câu 125. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 8.

C. −3.

D. 2.

C. 20.

D. 12.

Câu 126. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −9.
B. −12.
C. −5.
D. −15.
2
3
7n − 2n + 1
Câu 127. Tính lim 3
3n + 2n2 + 1
7

2
A. .
B. - .
C. 1.
D. 0.
3
3
2

2

sin x
Câu 128.
+ 2cos x lần lượt
√ là
√ [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm√số f (x) = 2
A. 2 và 3.
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 2 2.

[ = 60◦ , S O
Câu 129. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S√BC) bằng


a 57
2a 57
a 57

A. a 57.
B.
.
C.
.
D.
.
17
19
19
Trang 10/10 Mã đề 1


Câu 130. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. 6.
B. .
C. .
D. 9.
2
2
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1
1.

C

3.

C

4.

B

5.

D

6.

B

7.

D

8. A
10.

B


9.

C

11.

C
C

12.

D

13.

14.

D

15. A

16.

C

17. A

18.

B


19. A

20.

B

21.

22.

B

23.

D

25.

D

27.

D

24. A
26.

D
C


28.

C

29. A

30.

D

31.

32.

D

33.

34.

D

35. A

B
D

36.


B

37.

B

38.

B

39.

B

40.

D

41.

42.

D

43.

C

45.


C

44. A
46.

C

47.

B
B

48.

B

49.

50.

B

51. A

52.
54.

D

53.


C

D

55.

C

56. A

57.

C

58. A

59.

D

B

60.

B

61.

D


62.

B

63.

D

64.

B

65.

66.

D

67. A

68.

D

69.
1

C
D



70.

D

71. A

72.

D

73.

74.

C

75.

76.

C

77.

78.

79.


B

D
B
C
B

80. A

81. A

82. A

83.

C

84. A

85.

C

87.

C

86.
88. A


89.

90.

D

D

93. A

94. A

95. A

96.

D

97.

C

98.
100.

B

91.

C


92.

D

D

C

99.

B

101. A

102. A

103.

B

104. A

105.

B

106. A

107.


B

108. A

109. A

110.

B

111.

112.

B

113.

114.

115.

C

116.

D

B

D
B

117. A

118.

C

119.

B

120.

C

121.

B

122.

D

123.

D
D


124.

B

125.

126.

B

127.

128.

C

130.

C

129.

2

B
D




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×