Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 2 (176)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.48 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Khơng có.
C. Có hai.
D. Có vơ số.
Câu 2. Tính lim
A. 1.

5
n+3

B. 3.

C. 0.

D. 2.

Câu 3. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.


D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 4. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 11.
C. 12.
D. 4.
Câu 5. Tính giới hạn lim
x→2

A. 0.

x2 − 5x + 6
x−2
B. 5.

C. 1.

D. −1.

Câu 6. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 30.

C. 12.

D. 8.

Câu 7. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.

B. 24.

C. 4.

D. 144.

Câu 8. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 10.

C. 12.

D. 8.

Câu 9. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −3.
C. m = −1.

D. m = 0.

Câu 10. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Hai mặt.
C. Bốn mặt.

D. Một mặt.
tan x + m
Câu 11. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng

m tan x + 1
 π
0; .
4
A. (1; +∞).
B. (−∞; −1) ∪ (1; +∞). C. (−∞; 0] ∪ (1; +∞). D. [0; +∞).
Câu 12. Tính lim
x→3

A. −3.

x2 − 9
x−3

B. 3.

C. 6.

Câu 13. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {5; 3}.

D. +∞.
D. {3; 5}.

Câu 14. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.


C. Khối lập phương.
D. Khối bát diện đều.
p
ln x
1
Câu 15. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
A. .
B. .
C. .
D. .
3
3
9
9
Trang 1/10 Mã đề 1


Câu 16. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 1.


C. 2.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 3.

d = 60◦ . Đường chéo
Câu 17. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6
a3 6
2a3 6
.
B.
.
C.
.
D. a3 6.
A.
3
3
3

x+3
Câu 18. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. 1.
C. Vô số.
D. 2.
Câu 19. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 2.

C. 5.

D. 3.

Câu 20. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 3
a3 5
a3 5
a3 5
A.
.
B.
.
C.
.

D.
.
12
6
12
4
Câu 21. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 − 2; m = 1.
−2
C. M = e + 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 22. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 6.

C. 8.

D. 4.

Câu 23. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của

√mặt phẳng (AIC) có diện tích

√ hình chóp S .ABCD với
2
2

2
2
a 7
a 5
11a
a 2
.
B.
.
C.
.
D.
.
A.
4
8
16
32
Câu 24. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.
B. x = −2.
C. x = −8.
D. x = −5.
Câu 25. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B.
.
C. 7.

D. 5.
2
2
Câu 26. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
1
Câu 27. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. −2 < m < −1.
C. (−∞; −2] ∪ [−1; +∞). D. (−∞; −2) ∪ (−1; +∞).
3
2
Câu 28. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2

A. 3 − 4 2.
B. −3 − 4 2.
C. −3 + 4 2.
1 − n2
Câu 29. [1] Tính lim 2
bằng?
2n + 1
1
1

1
A. − .
B. .
C. .
2
3
2


D. 3 + 4 2.

D. 0.
Trang 2/10 Mã đề 1


Câu 30. [2] Tổng các nghiệm của phương trình 3
A. 1 − log2 3.

B. − log2 3.

1−x

!x
1
=2+

9
C. log2 3.

D. − log3 2.


Câu 31. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m > 3.
D. m < 3.
Câu 32. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ± 3.
B. m = ±3.
C. m = ±1.
D. m = ± 2.
Câu 33. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 12.

C. 8.

D. 30.

Câu 34. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 35. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 36. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,


√ N, P bằng


20 3
14 3
.
B. 6 3.
C. 8 3.
D.
.
A.
3
3
Câu 37. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Câu (III) sai.

C. Khơng có câu nào D. Câu (I) sai.
sai.
Câu 38. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3

a
A. .
B.
.
C. .
D. a.
2
2
3
Câu 39. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 4.
C. 0, 3.
D. 0, 2.
Câu 40. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 3.
C. 2.

D. 1.

Câu 41. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 3 lần.
Câu 42. Trong các khẳng định sau, khẳng định nào sai?√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.

B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Cả ba đáp án trên.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Trang 3/10 Mã đề 1


π
Câu 43. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


C. T = 2.
D. T = 2 3.
A. T = 4.
B. T = 3 3 + 1.
Câu 44. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1202 m.
C. 1134 m.
D. 6510 m.
un
Câu 45. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. 1.
C. −∞.
D. 0.

Câu 46. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−∞; 1).
C. (−∞; −1).

D. (−1; 1).

Câu 47. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = R \ {1; 2}.
C. D = (−2; 1).

D. D = R.

2

Câu 48. [2] Tổng các nghiệm của phương trình 3
A. 4.
B. 3.
x−2
Câu 49. Tính lim
x→+∞ x + 3
A. 1.
B. 2.

x2 −4x+5

= 9 là
C. 2.


D. 5.

2
D. − .
3

C. −3.

Câu 50. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
B. f 0 (0) = 1.
C. f 0 (0) = ln 10.
A. f 0 (0) =
ln 10
log7 16
Câu 51. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. −4.
B. −2.
C. 2.

D. f 0 (0) = 10.

D. 4.

Câu 52. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và

AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng




a 2
a 2
A. a 2.
B. 2a 2.
C.
.
D.
.
4
2

Câu 53. √
Thể tích của khối lập phương có cạnh bằng a 2


2a3 2
A.
.
B. 2a3 2.
C. V = a3 2.
D. V = 2a3 .
3
Câu 54. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1

1
1
B. m > .
C. m ≤ .
D. m ≥ .
A. m < .
4
4
4
4

Câu 55. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vô nghiệm.
B. 2 nghiệm.
C. 1 nghiệm.
D. 3 nghiệm.
Câu 56. Tính lim

x→+∞

A. 1.

x+1
bằng
4x + 3
1
B. .
4

C. 3.


Câu 57. [3-12214d] Với giá trị nào của m thì phương trình
A. 0 < m ≤ 1.

B. 2 ≤ m ≤ 3.

D.
1
3|x−2|

1
.
3

= m − 2 có nghiệm

C. 2 < m ≤ 3.

D. 0 ≤ m ≤ 1.
Trang 4/10 Mã đề 1


Câu 58. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.

B. 4.

C. 3.


1
3|x−1|

= 3m − 2 có nghiệm duy

D. 2.

Câu 59. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 1587 m.
C. 387 m.
D. 25 m.
Câu 60. Tính lim
x→5

2
A. − .
5

x2 − 12x + 35
25 − 5x
2
B. .
5

Câu 61.

Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.

C. −∞.
Z

D. +∞.

f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. B.
f (x)dx = F(x) + C ⇒
!0
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = f (x).

Z

f (t)dt = F(t) + C.

Câu 62. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun √
z.




5 13
.
B. 2 13.
C. 26.
D. 2.
A.
13
Câu 63. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 12 năm.
C. 13 năm.
D. 11 năm.
Câu 64. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {5; 3}.

D. {3; 3}.

Câu 65. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 6%.
C. 0, 8%.

D. 0, 5%.
Câu 66. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 24.
C. 22.
D. 23.
x−3
Câu 67. [1] Tính lim
bằng?
x→3 x + 3
A. −∞.
B. 1.
C. +∞.
D. 0.
Câu 68. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≤ 3.
C. m < 3.
D. m ≥ 3.
Câu 69. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
B. 5.

C. 68.
D.
.
A. 34.
17
Trang 5/10 Mã đề 1


Câu 70. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n2 lần.
C. n3 lần.
D. n lần.
Câu 71. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 + ln x.

C. y0 = x + ln x.

Câu 72. [1] Đạo hàm của hàm số y = 2 x là
A. y0 = 2 x . ln 2.

B. y0 = 2 x . ln x.

C. y0 =

1
2 x . ln

.


D. y0 = 1 − ln x.
D. y0 =

1
.
ln 2

x
Câu 73. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh của khối chóp bằng 2n.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số mặt của khối chóp bằng 2n+1.
!
1
1
1
Câu 74. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 1.
B. .
C. 0.
D. 2.
2
2

Câu 75. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ± 3.
B. m = ±3.
C. m = ± 2.
D. m = ±1.
x+2
đồng biến trên khoảng
Câu 76. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 1.
B. 3.
C. 2.
D. Vô số.
2

Câu 77. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 3 − log2 3.
C. 1 − log2 3.
2n2 − 1
Câu 78. Tính lim 6
3n + n4
2
B. 1.
A. .
3

C. 2.


D. 2 − log2 3.

D. 0.

log 2x
Câu 79. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 2 log 2x
1
1 − 4 ln 2x
0
0
.
B. y0 =
.
D.
y
=
.
A. y0 = 3
.
C.
y
=
x ln 10
x3
2x3 ln 10

2x3 ln 10
Câu 80. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
−1 + i 3
−1 − i 3
A. P =
.
B. P = 2.
C. P =
.
D. P = 2i.
2
2
Câu 81.√Biểu thức nào sau đây √
khơng có nghĩa
−3
0
A. (− 2) .
B.
−1.
C. (−1)−1 .
D. 0−1 .
Câu 82. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 10.

C. 12.

D. 6.

Câu 83. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)

hợp với √
đáy một góc 60◦ . Thể tích khối chóp S .ABCD là



a3 3
2a3 3
a3 3
3
.
B. a 3.
C.
.
D.
.
A.
6
3
3
Câu 84. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 8π.
C. 32π.
D. V = 4π.
Trang 6/10 Mã đề 1


Câu 85. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.

B. Hình tam giác.
C. Hình lập phương.
Câu 86. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = (0; +∞).

D. Hình lăng trụ.

C. D = R \ {1}.

D. D = R \ {0}.
x−1 y z+1
= =

Câu 87. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 10x − 7y + 13z + 3 = 0.
C. 2x − y + 2z − 1 = 0.
D. −x + 6y + 4z + 5 = 0.
Câu 88. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
ab
1

.
C.
.
D.
.
A. 2
.
B.



a + b2
a2 + b2
2 a2 + b2
a2 + b2
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
A. 2.
B. 1.
C. −1.
D. .
2
Câu 90. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 7 năm.
C. 8 năm.

D. 9 năm.
Câu 89. [2-c] Cho hàm số f (x) =

Câu 91. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.

C. Khối bát diện đều.

D. Khối 12 mặt đều.

Câu 92. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Trục ảo.
C. Đường phân giác góc phần tư thứ nhất.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
Câu 93. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ min |z − 1 − i|.
√ thức |z − 1 + 3i| = 3. Tìm
D. 2.
A. 1.
B. 2.
C. 10.
3

Câu 94. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e2 .
C. e.


D. e5 .

Câu 95. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 96. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 0, 8.
C. 72.

D. −7, 2.

Câu 97. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. −1.


B. 4.

C. 2.

3

Z

6
3x + 1

. Tính

1

f (x)dx.
0

D. 6.
Trang 7/10 Mã đề 1


Câu 98. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 1).
C. A0 (−3; −3; 3).
D. A0 (−3; 3; 3).
Câu 99. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị

của a + 2b bằng
7
5
A. .
B. 9.
C. .
D. 6.
2
2

Câu 100. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 4.
C. 6.
D. 108.
Câu 101. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
1
C. 5.
A. 25.
B. .
5
Câu 102. Khối lập phương thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {3; 4}.

D. {5; 3}.

Câu 103. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.

B. Khối bát diện đều.

D. Khối 12 mặt đều.



C. Khối tứ diện đều.


D.

5.

Câu 104. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Chỉ có (I) đúng.
C. Cả hai câu trên đúng. D. Cả hai câu trên sai.
1
bằng

Câu 105. [1] Giá trị của biểu thức log √3
10
1
1
A. .
B. 3.
C. −3.
D. − .
3
3


Câu 106.

√ Tìm giá trị lớn nhất của hàm số y = x + 3 + 6 −
√x
B. 3.
C. 2 + 3.
D. 3 2.
A. 2 3.
Câu 107. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 9 mặt.

D. 7 mặt.

[ = 60◦ , S O
Câu 108. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S BC) bằng


a 57
a 57
2a 57
A.
.
B.
.
C. a 57.
D.
.
19
17
19
Câu 109. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là

3
3
3
3
a 3
a
a
A.

.
B. a3 .
C.
.
D.
.
2
3
6
Câu 110. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 1.

B. 2.

C. +∞.

D. 3.

B. −∞.

C. +∞.

D. 0.

3

Câu 111. Tính lim
x→1


A. 3.

x −1
x−1

Trang 8/10 Mã đề 1


Câu 112. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng S B và√AD bằng


a 2
a 2
D. a 2.
A.
.
B.
.
C. a 3.
3
2
Câu 113. Hàm số nào sau đây khơng có cực trị
1
x−2
A. y = x3 − 3x.
B. y = x + .
C. y =

.
D. y = x4 − 2x + 1.
x
2x + 1
Câu 114. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 48cm3 .
C. 84cm3 .
D. 91cm3 .
Câu 115. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. n3 lần.
D. 2n2 lần.


Câu 116. Phần thực
√ và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt l √

A. Phần thực là √2 − 1, phần ảo là −√ 3.
B. Phần thực là 1√− 2, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Câu 117. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng



√M + m
C. 8 2.
D. 7 3.
A. 16.
B. 8 3.

Câu 118. Xác định phần ảo của √
số phức z = ( 2 + 3i)2

C. −6 2.
D. −7.
A. 7.
B. 6 2.
Câu 119. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −12.
B. −15.
C. −9.
D. −5.
Câu 120.
Cho hàm số f (x),
Z
Z g(x) liên tục
Z trên R. Trong các
Z mệnh đề sau, mệnhZđề nào sai? Z
A.
Z
C.

( f (x) − g(x))dx =

f (x)dx − g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.

B.
Z
D.

( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

Câu 121. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B. a3 .
C.
.
D.
.
6

12
24
Câu 122.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
xα+1
1
A.
xα dx =
+ C, C là hằng số.
B.
dx = ln |x| + C, C là hằng số.
α+1
Z
Z x
C.

0dx = C, C là hằng số.

D.

dx = x + C, C là hằng số.

1
Câu 123. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 3).
C. (−∞; 1) và (3; +∞). D. (1; +∞).
log 2x

Câu 124. [3-1229d] Đạo hàm của hàm số y =

x2
1
1 − 2 ln 2x
1 − 4 ln 2x
1 − 2 log 2x
0
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
D.
y
=
.
2x ln 10
x ln 10
2x3 ln 10
x3
Câu 125. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
Trang 9/10 Mã đề 1


(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.


B. 1.

C. 2.

D. 0.

2

Câu 126. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
A. 3 .
B. 3 .
C. √ .
2e
e
2 e

D.

1
.
e2


Câu 127. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là



3
3

a3
a
a
3
3
A.
.
B. a3 3.
.
D.
.
C.
4
3
12
Câu 128. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. 3.
C. −3.
D. −6.
!
1
1
1
Câu 129. [3-1131d] Tính lim +
+ ··· +

1 1+2
1 + 2 + ··· + n
5
3
A. 2.
B. +∞.
C. .
D. .
2
2
Câu 130. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 11 cạnh.
C. 12 cạnh.
D. 10 cạnh.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C

1.

2.

C

C

3.

D

4.

5.

D

6.

7.

D

8.

C

9. A

10.

C

11. A


12.

C

13.

D

14.

15.

D

16.

17.

D

18. A

19. A

B

D
B

20.


C

21.

B

22.

B

23.

B

24.

C

25. A

26.

C

27. A

28.

C


29. A

30.

B

32.

D

33. A

34.

D

35. A

36.

31.

B

37.

C

38.


39.

C

40. A

B
D

41. A

42. A

43. A

44.

D
D

45.

D

46.

47.

D


48. A

49. A

50.

51. A

52.

53.

B

54.

55.

B

56.

57.

60.

61. A

62. A

B

65. A
67.

D
C
B

58. A

C

59. A
63.

C

D

64.

C

66.

C

68.
1


B

D


69.

D

C

70.

71.

B

72. A

73.

B

74. A

75.

D


76.

77.

D

78.

79. A

80.

C
D
B

81.

D

82. A

83.

D

85.

B


87.

B
B

86. A
88.

D

89.

90.

D

91. A

92.

D

93. A

94.

D

95. A


96.

D

97.

98.

D

99. A

100.

B

101. A

102.

B

103.

104.

B

C


105.

C

106.

D

107.

108.

D

109. A

D
C

110.

B

111. A

112.

B

113.


C

114. A

115.

C

116. A

117. A

118.

119. A

B

120.

C

122. A
124.

B

126.
128.

130.

D

121.

C

123.

C

125.

C

127.

C

129. A

C
D

2




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×