Tải bản đầy đủ (.pdf) (4 trang)

Đề ôn khảo sát chất lượng thptqg môn toán (547)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (124.97 KB, 4 trang )

Tài liệu Pdf miễn phí LATEX

ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001
x
π
π
π
và F( ) = √ . Tìm F( )
2
cos x
3
4
3
π
π ln 2
π
π ln 2
C. F( ) = −
.
D. F( ) = −
.
4
4
2
4
3
2



Câu 1. Biết F(x) là một nguyên hàm của hàm số f (x) =
π
π ln 2
A. F( ) = +
.
4
4
2

π
π ln 2
B. F( ) = +
.
4
3
2

Câu 2. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s). Tính
quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?
A. S = 20 (m).
B. S = 12 (m).
C. S = 28 (m).
D. S = 24 (m).
Câu 3. Cho hình
đều S .ABCcó cạnh đáy bằng a và cạnh bên bằng
√ b. Thể tích của khối chóp là:
√ chóp
2
2

a 3b2 − a2
3a b
A. VS .ABC =
.
B. VS .ABC =
.
12
q 12 √

a2 b2 − 3a2
3ab2
C. VS .ABC =
.
D. VS .ABC =
.
12
12
−u (2; −2; 1), kết luận nào sau đây là đúng?
Câu 4. Trong
không gian với hệ tọa độ Oxyz cho →

−u | = 3.
−u | = 1.
−u | = 3
−u | = 9.
A. |→
B. |→
C. |→
D. |→
.









Câu 5. Cho hình hộp ABCD.A B C D có đáy ABCD là hình bình hành. Hình chiếu vng góc của A′
lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc giữa mặt
bên (ABB′ A′ ) và mặt đáy bằng 450 . Tính thể tích khối tứ diện ACB′ D′ theo a.
A. 60a3 .
B. 30a3 .
C. 100a3 .
D. 20a3 .
Câu 6.√ Cho √hai số thực a, bthỏa√mãn a >
b > 0. Kết luận nào sau đây là sai?

√5

2
2
− 3
− 3
B. a
C. ea > eb .
D. 5 a < b.
A. a > b .
Câu 7. Một mặt cầu có diện tích bằng 4πR2 thì thể tích của khối cầu đó là

3
C. πR3 .
A. 4πR3 .
B. πR3 .
4

4
D. πR3 .
3

Câu 8. Phương trình tiếp tuyến với đồ thị hàm số y = log5 x tại điểm có hồnh độ x = 5 là:
x
x
1
A. y =
+ 1.
B. y =
+1−
.
5 ln 5
5 ln 5
ln 5
x
1
x
1
C. y =
−1+
.
D. y =


.
5 ln 5
ln 5
5 ln 5 ln 5
Câu 9. Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB. Tính thể
tích của khối tứ diện B.MCD.
V
V
V
V
A. .
B. .
C. .
D. .
3
2
5
4

Câu 10. Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a 3. Tính khoảng cách giữa hai
đường √
thẳng BB′ và AC ′ .



a 3
a 3
a 2
A.

.
B.
.
C. a 3.
D.
.
4
2
2
x−1
y+2
z
Câu 11. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
=
= . Viết phương
1
−1
2
trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vng góc với d.
A. (P) : x + y + 2z = 0. B. (P) : x − y + 2z = 0. C. (P) : x − 2y − 2 = 0. D. (P) : x − y − 2z = 0.
Trang 1/4 Mã đề 001


Câu 12. Cho hàm số y = x3 + 3x2 − 9x − 2017. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; −3).
C. Hàm số đồng biến trên khoảng (−3; 1).
D. Hàm số nghịch biến trên khoảng (−3; 1).
Câu 13. Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y =
t(t > 0). Tìm lim S (t).


1
; y = 0; x = 0; x =
(x + 1)(x + 2)2

t→+∞

1
A. ln 2 − .
2

1
B. ln 2 + .
2

C.

1
− ln 2.
2

1
D. − ln 2 − .
2

Câu 14. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − 1 = 0. Viết phương trình
mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P).
1
A. (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3.
B. (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = .

3
1
2
2
2
2
2
2
C. (S ) : (x + 2) + (y + 1) + (z − 1) = 3.
D. (S ) : (x − 2) + (y − 1) + (z + 1) = .
3
a3
Câu 15. Cho hình chóp đều S .ABCD có cạnh đáy bằng a và thể tích bằng . Tìm góc giữa mặt bên và
6
mặt đáy của hình chóp đã cho.
A. 1350 .
B. 600 .
C. 300 .
D. 450 .
√ x
Câu 16. Tìm nghiệm của phương trình 2 x = ( 3) .
A. x = 2.
B. x = −1.
C. x = 0.
D. x = 1.
Câu 17. Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?
A. y = −x4 + 3x2 − 2.
B. y = x3 .
C. y = x2 − 2x + 2.
D. y = x3 − 2x2 + 3x + 2.

Câu 18. Phương trình tiếp tuyến với đồ thị hàm số y = log5 x tại điểm có hồnh độ x = 5 là:
x
1
x
+ 1.
B. y =

.
A. y =
5 ln 5
5 ln 5 ln 5
x
1
x
1
C. y =
+1−
.
D. y =
−1+
.
5 ln 5
ln 5
5 ln 5
ln 5
Câu 19. Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được
A. Đường hypebol.
B. Đường elip.
C. Đường tròn.
D. Đường parabol.


A. I = ln(

m+2
).
m+1

Rm

dx
theo m?
+ 3x + 2
0
m+2
m+1
B. I = ln(
).
C. I = ln(
).
2m + 2
m+2

Câu 20. Cho số thực dươngm. Tính I =

x2

D. I = ln(

2m + 2
).

m+2

Câu 21. Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − 5 = 0. Bán kính R
của (S) bằng
√ bao nhiêu?

A. R = 21.
B. R = 29.
C. R = 9.
D. R = 3.
Câu 22. Cho hàm số y =
A. ad > 0 .

ax + b
có đồ thị như hình vẽ bên. Kết luận nào sau đây là sai?
cx + d
B. ab < 0 .
C. ac < 0.
D. bc > 0 .

Câu 23. Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng
A. 4πR3 .
B. πR3 .
C. 6πR3 .
D. 2πR3 .
Câu 24. Cho hình lập phương ABCD.A′ B′C ′ D′ . Tính góc giữa hai đường thẳng AC và BC ′ .
A. 360 .
B. 300 .
C. 450 .
D. 600 .

Câu 25. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s).
Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động.
A. S = 24 (m).
B. S = 12 (m).
C. S = 28 (m).
D. S = 20 (m).
Trang 2/4 Mã đề 001


Câu 26. Cường độ một trận động đất M (richter) được cho bởi công thức M = log A − log A0 , với A là
biên độ rung chấn tối đa và A0 là một biên độ chuẩn (hằng số). Đầu thế kỷ 20, một trận động đất ở San
Francisco có cường độ 8,3 độ Richter. Trong cùng năm đó, trận động đất khác Nam Mỹ có biên độ mạnh
hơn gấp 4 lần. Cường độ của trận động đất ở Nam Mỹ có kết quả gần đúng bằng:
A. 8,9.
B. 11.
C. 2,075.
D. 33,2.
Câu 27. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
.
C. −6.
D. 0.
A. 1.
B.
6
Câu 28. Cho a > 1, a , 0 Tìm mệnh đề đúng trong các mệnh đề sau:
A. loga x có nghĩa với ∀x ∈ R.
B. loga 1 = a và loga a = 0.
D. loga (xy) = loga x.loga y.
C. loga xn = log 1 x , (x > 0, n , 0).

an

Câu 29. Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2). Tìm tọa độ D để ABCD là hình bình
hành.
A. (1; −1; 1).
B. (1; 1; 3).
C. (−1; 1; 1).
D. (1; −2; −3).
Câu 30. Tìm tập hợp tất cả các giá trị của tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm
cực đại có hồnh độ nhỏ hơn 1.
A. S = (−1; +∞) .
B. S = [−1; +∞) .
C. S = (−4; −1).
D. S = (−∞; −4) ∪ (−1; +∞) .
1
1
Câu 31. Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x3 − (m − 2)x2 + (m − 2)x + m2 có
3
3
hai điểm cực trị nằm về phía bên phải trục tung?
A. m > 3.
B. m > 2.
C. m < 2.
D. m > 3 hoặc m < 2.
3
x
Câu 32. Tìm tất cả các giá trị của tham số m để hàm số y = (m + 2) − (m + 2)x2 + (m − 8)x + m5 nghịch
3
biến trên R.
A. m ≤ 0.

B. m ≤ −2.
C. m < −3.
D. m ≥ −8.
Câu 33. Cho một hình trụ (T ) có chiều cao và bán kính đều bằng 3a Một hình vng ABCD có hai cạnh
AB, CD lần lượt là hai dây cung của hai đường trịn đáy, cạnh AD, BC khơng phải là đường sinh của
hình trụ (T ). Tính cạnh của hình vng này.


3a 10
A. 3a 5.
B. 3a.
C. 6a.
D.
.
2
Câu 34. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi

− (2; 3; −5).
qua điểm
A(1; −2; 4) và có một

 véc tơ chỉ phương là u 





x = 1 + 2t
x = 1 − 2t
x = 1 + 2t

x = −1 + 2t












y = −2 + 3t .
y = −2 + 3t .
y = −2 − 3t .
y = 2 + 3t .
A. 
B. 
C. 
D. 








 z = 4 − 5t

 z = 4 + 5t
 z = 4 − 5t
 z = −4 − 5t
Câu 35. Tìm tất cả các giá trị của tham số m để hàm số y = mx3 + mx2 − x + 2 nghịch biến trên R.
A. −4 ≤ m ≤ −1.
B. m < 0.
C. −3 ≤ m ≤ 0.
D. m > −2.
Câu 36. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng
x = −1; x = 2.
29
27
25
23
A. .
B.
.
C. .
D. .
4
4
4
4
Câu 37. Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vng. Diện tích tồn phần của (T ) là
A. 6π.
B. 8π.
C. 12π.
D. 10π.
Câu 38. Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A(1; 2; 3)

−n (2; 1; −4).
và có một véc tơ pháp tuyến là →
A. 2x + y − 4z + 5 = 0.
B. −2x − y + 4z − 8 = 0.
C. 2x + y − 4z + 7 = 0.
D. 2x + y − 4z + 1 = 0.
Trang 3/4 Mã đề 001


Câu 39. Chọn mệnh đề đúng trong các mệnh đề sau:
A. Nếu a > 1 thì a x > ay ⇔ x > y.
B. Nếu a > 0 thì a x = ay ⇔ x = y.
x
y
C. Nếu a < 1 thì a > a ⇔ x < y.
D. Nếu a > 0 thì a x > ay ⇔ x < y.
Câu 40. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh
√ a. Hai mặt phẳng (S AB), (S AC) cùng
2
vng góc
là a 3. Tính thể tích khối
√ với mặt phẳng (ABC),
√diện tích tam giác S BC3 √
√ chóp S .ABC.
3
3
3
a 15
a 15
a 15

a 5
A.
.
B.
.
C.
.
D.
.
16
8
4
3
Câu 41. Trong không gian với hệ trục tọa độ Oxyz, gọi (P)
√ là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)
3 2
và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng
. Giả sử phương trình mặt phẳng (P) có dạng
2
ax + by + cz + 2 = 0. Tính giá trị abc.
A. −4.
B. −2.
C. 2.
D. 4.
Câu 42. Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6). Gọi M là điểm nằm trên
đoạn AB sao cho MA = 2MB. Tìm tọa độ điểm M
4 10 16
2 7 21
7 10 31
5 11 17

A. M( ; ; ).
B. M( ; ; ).
C. M( ; ; ).
D. M( ; ; ).
3 3 3
3 3 3
3 3 6
3 3 3
Câu 43. Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vng. Diện tích tồn phần của (T ) là
A. 10π.
B. 6π.
C. 8π.
D. 12π.
2
x + mx + 1
đạt cực tiểu tại điểm x = 0.
Câu 44. Tìm tất cả các giá trị của tham số m để hàm số y =
x+1
A. m = 1.
B. m = −1.
C. Khơng có m.
D. m = 0.
Câu 45. Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau. Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
A. 36080253 đồng.
B. 36080254 đồng.
C. 36080255 đồng.
D. 36080251 đồng.


Câu 46. Tính đạo hàm của hàm số y = log4 x2 − 1
1
x
x
x
. B. y′ = √
. D. y′ = 2
.
A. y′ =
. C. y′ = 2
2
2(x − 1) ln 4
(x − 1)log4 e
(x − 1) ln 4
x2 − 1 ln 4
R
ax + b 2x
Câu 47. Biết a, b ∈ Z sao cho (x + 1)e2x dx = (
)e + C. Khi đó giá trị a + b là:
4
A. 3.
B. 1.
C. 4.
D. 2.
Câu 48. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 3a; cạnh S A vng góc với mặt
phẳng (ABCD), S A = 2a. Tính thể tích khối chóp S .ABCD
A. 3a3 .
B. 6a3 .
C. 4a3 .
D. 12a3 .

Câu 49. Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC là tam giác tù, AB = AC. Góc tạo bởi hai
đường thẳng AA′ và BC ′ bằng 300 ; khoảng cách giữa AA′ và BC ′ bằng a; góc giữa hai mặt phẳng
(ABB′ A′ √
) và (ACC ′ A′ ) bằng 600 . Tính
thể tích khối lăng trụ√ABC.A′ B′C ′ .


B. 6a3 3.
C. 9a3 3.
D. 3a3 3.
A. 4a3 3.
r
3x + 1
Câu 50. Tìm tập xác định D của hàm số y = log2
x−1
A. D = (−1; 4).
B. D = (−∞; −1] ∪ (1; +∞).
C. D = (1; +∞).
D. D = (−∞; 0).
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 001