Tài liệu Pdf miễn phí LATEX
ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001
3
, ((ℵ) có đỉnh thuộc (S ) và đáy
2
là đường trịn nằm hồn tồn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn
nhất. √
√
√
4 3π
2π
C. 4 3π.
D. 2 3π.
A.
.
B. √ .
3
3
Câu 1. Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R =
Câu 2. Trong khơng gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − 5 = 0. Bán kính R
của (S) bằng
√ bao nhiêu?
√
A. R = 21.
B. R = 29.
C. R = 9.
D. R = 3.
Câu 3. Tìm tất cả các giá trị của tham số m để hàm số y = xe−x + mx đồng biến trên R.
A. m > e2 .
B. m ≥ e−2 .
C. m > 2e .
D. m > 2.
Câu 4. Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y =
3 + 2x
tại
x+1
hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?
3
A. 1 < m , 4.
B. ∀m ∈ R .
C. m < .
D. −4 < m < 1.
2
Câu 5. Cho lăng trụ đều ABC.A′ B′C ′ có tất cả các cạnh đều bằng a. Tính khoảng cách giữa hai đường
thẳng√AB′ và BC ′ .
√
a
3a
5a
2a
A.
D. √ .
.
B.
.
C. √ .
2
3
5
5
Câu 6. Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?
A. y = x3 .
B. y = x3 − 2x2 + 3x + 2.
2
C. y = x − 2x + 2.
D. y = −x4 + 3x2 − 2.
Câu 7. Cho 0 < a , 1; 0 < x , 2. Đẳng thức nào sau đây là sai?
A. loga x2 = 2loga x.
B. loga (x − 2)2 = 2loga (x − 2).
1
C. aloga x = x.
D. loga2 x = loga x.
2
Câu 8. Cho a > 1; 0 < x < y. Bất đẳng thức nào sau đây là đúng?
A. log x > log y.
B. log 1 x > log 1 y.
C. ln x > ln y.
D. loga x > loga y.
a
a
Câu 9. Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh bằng a. Tính thể tích khối chóp D.ABC ′ D′ .
a3
a3
a3
a3
A. .
B. .
C. .
D. .
3
6
9
4
Câu 10. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4). Tìm tọa độ trung
điểm I của đoạn thẳng AB.
A. I(0; −1; 2).
B. I(0; 1; 2).
C. I(1; 1; 2).
D. I(0; 1; −2).
Câu 11. Cho a, b là hai số thực dương, khác 1. Đặt loga b = m, tính theo m giá trị của P = loga2 b −
log √b a3 .
m2 − 12
4m2 − 3
m2 − 12
m2 − 3
A.
.
B.
.
C.
.
D.
.
2m
2m
m
2m
√ x
Câu 12. Tìm nghiệm của phương trình 2 x = ( 3) .
A. x = 0.
B. x = 2.
C. x = −1.
D. x = 1.
Trang 1/4 Mã đề 001
Câu 13. Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y =
1
; y = 0; x = 0; x =
(x + 1)(x + 2)2
t(t > 0). Tìm lim S (t).
t→+∞
1
1
1
1
A. − ln 2 − .
B. ln 2 + .
C. ln 2 − .
D. − ln 2.
2
2
2
2
3
2
Câu 14. Cho hàm số y = x + 3x − 9x − 2017. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (−3; 1).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; −3).
D. Hàm số nghịch biến trên khoảng (−3; 1).
Câu 15. Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình
vng. Tính thể tích của khối trụ.
A. π .
B. 3π.
C. 4π.
D. 2π.
√
Câu 16. Cho hàm số y = x− 2017 . Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm
số?
A. Không có tiệm cận.
B. Có một tiệm cận ngang và khơng có tiệm cận đứng.
C. Có một tiệm cận ngang và một tiệm cận đứng. .
D. Khơng có tiệm cận ngang và có một tiệm cận đứng.
Câu 17. Một mặt cầu có diện tích bằng 4πR2 thì thể tích của khối cầu đó là
4
3
A. πR3 .
B. 4πR3 .
C. πR3 .
D. πR3 .
3
4
2
Câu 18. Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3 (x + x + 1) + 2x3 cắt đồ thị hàm
số y = 3x2 + log3 x + m là:
A. S = [ -ln3; +∞).
B. S = [ 0; +∞).
C. S = (−∞; 2).
D. S = (−∞; ln3).
Câu 19. Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (−2; 3; 1).
B. M ′ (−2; −3; −1).
C. M ′ (2; 3; 1).
D. M ′ (2; −3; −1).
Câu R20. Công thức nào sai?
A. R cos x = sin x + C.
C. a x = a x . ln a + C.
R
B. R sin x = − cos x + C.
D. e x = e x + C.
Câu 21. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Giao điểm của (P)
và trục tung có tọa độ là
A. (0; 1; 0).
B. (0; 0; 5).
C. (0; −5; 0).
D. (0; 5; 0).
Câu 22. Cho a > 1; 0 < x < y. Bất đẳng thức nào sau đây là đúng?
B. ln x > ln y.
C. loga x > loga y.
A. log 1 x > log 1 y.
D. log x > log y.
a
a
Câu 23. Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng
A. πR3 .
B. 6πR3 .
C. 2πR3 .
D. 4πR3 .
Câu 24. Phương trình tiếp tuyến với đồ thị hàm số y = log5 x tại điểm có hồnh độ x = 5 là:
x
1
x
A. y =
−1+
.
B. y =
+ 1.
5 ln 5
ln 5
5 ln 5
x
1
x
1
+1−
.
D. y =
−
.
C. y =
5 ln 5
ln 5
5 ln 5 ln 5
Câu 25. Hình nón có bán kính √
đáy R, đường sinh l thì diện tích xung quanh của nó√bằng
A. πRl.
B. π l2 − R2 .
C. 2πRl.
D. 2π l2 − R2 .
1
1
1
Câu 26. Rút gọn biểu thức M =
+
+ ... +
ta được:
loga x loga2 x
logak x
k(k + 1)
k(k + 1)
k(k + 1)
4k(k + 1)
A. M =
.
B. M =
.
C. M =
.
D. M =
.
loga x
2loga x
loga x
3loga x
Trang 2/4 Mã đề 001
Câu 27. Tính thể tích khối trịn xoay khi quay xung quanh trục hồnh hình phẳng giới hạn bởi các đường
1
y = , x = 1, x = 2 và trục hoành.
x
3π
π
π
3π
.
B. V =
.
C. V = .
D. V = .
A. V =
5
2
2
3
Câu 28. Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước. Người ta thả vào đó một
khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngoài là 18π
(dm3). Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa khối cầu chìm
trong nước. Tính thể tích nước cịn lại trong bình.
A. 24π(dm3 ).
B. 12π(dm3 ).
C. 6π(dm3 ).
D. 54π(dm3 ).
x2 + 2x
Câu 29. Khoảng cách giữa hai điểm cực trị của đồ thị hàm số y =
là:
x−1
√
√
√
√
A. 2 3.
B. 2 15.
C. −2 3.
D. 2 5.
Câu 30. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = 0 và
mặt phẳng (P) có phương trình x + y + z − 4 = 0. Mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có
chu vi là:
√
A. 8π.
B. 4π.
C. 4 3π.
D. 2π.
Re lnn x
dx, (n > 1).
Câu 31. Tính tích phân I =
x
1
1
1
1
A. I =
.
B. I = .
C. I =
.
D. I = n + 1.
n+1
n
n−1
Câu 32. Lăng trụ ABC.A′ B′C ′ có đáy là tam giác đều cạnh a. Hình chiếu vng góc của A′ lên (ABC)
là trung điểm của BC. Góc giữa cạnh bên và mặt phẳng đáy là 600 . Khoảng cách từ C ′ đến mp (ABB′ A′ )
là
√
√
√
√
3a 10
3a 13
3a 13
a 3
A.
.
B.
.
C.
.
D.
.
20
26
13
2
Câu 33. Một sinh viên A trong thời gian 4 năm học đại học đã vay ngân hàng mỗi năm 10 triệu đồng
với lãi suất 3
A. 43.091.358 đồng.
B. 48.621.980 đồng.
C. 46.538667 đồng.
D. 45.188.656 đồng.
Câu 34. Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với 0 < a , 1. Chọn mệnh đề đúng.
A. P = 2 + 2(ln a)2 .
B. P = 2 ln a.
C. P = 2loga e.
D. P = 1.
Câu 35. Tính tích tất cả các nghiệm của phương trình (log2 (4x))2 + log2 (
A.
1
.
128
B.
1
.
6
C.
1
.
64
x2
)=8
8
1
D. .
32
Câu 36. Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau. Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
A. 36080253 đồng.
B. 36080251 đồng.
C. 36080255 đồng.
D. 36080254 đồng.
3x
Câu 37. Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y =
cắt đường thẳng y = x + m tại
x−2
7
hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1; ) làm trọng tâm.
3
A. m = 1.
B. m = 2.
C. m = −2.
D. Không tồn tại m.
Câu 38. Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A(1; 2; 3)
−n (2; 1; −4).
và có một véc tơ pháp tuyến là →
A. 2x + y − 4z + 7 = 0.
B. 2x + y − 4z + 1 = 0.
C. 2x + y − 4z + 5 = 0.
D. −2x − y + 4z − 8 = 0.
Trang 3/4 Mã đề 001
Câu 39. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh
√ a. Hai mặt phẳng (S AB), (S AC) cùng
2
vng góc
là a 3. Tính thể tích khối
√diện tích tam giác S BC3 √
√ chóp S .ABC.
√ với mặt phẳng (ABC),
a3 15
a 15
a3 15
a3 5
.
B.
.
C.
.
D.
.
A.
3
16
8
4
Câu 40. Cho m = log2 3; n = log5 2. Tính log2 2250 theo m, n.
3mn + n + 4
2mn + n + 2
A. log2 2250 =
.
B. log2 2250 =
.
n
n
2mn + n + 3
2mn + 2n + 3
C. log2 2250 =
.
D. log2 2250 =
.
n
m
Câu 41. Cho hàm số y = x2 − x + m có đồ thị là (C). Tìm tất cả các giá trị của tham số m để tiếp tuyến
của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2).
A. m = 4.
B. m = 3.
C. m = 2.
D. m = 1.
Câu 42. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x + y − 2z + 1 = 0.
A. (x − 1)2 + (y − 2)2 + (z − 4)2 = 3.
B. (x − 1)2 + (y + 2)2 + (z − 4)2 = 1.
C. (x − 1)2 + (y − 2)2 + (z − 4)2 = 1.
D. (x − 1)2 + (y − 2)2 + (z − 4)2 = 2.
Câu 43. Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC là tam giác tù, AB = AC. Góc tạo bởi hai
đường thẳng AA′ và BC ′ bằng 300 ; khoảng cách giữa AA′ và BC ′ bằng a; góc giữa hai mặt phẳng
′ ′ ′
(ABB′ A′ √
) và (ACC ′ A′ ) bằng 600 . Tính
√ thể tích khối lăng trụ
√ABC.A B C .
√
3
3
3
B. 6a 3.
C. 9a 3.
D. 3a3 3.
A. 4a 3.
Câu 44. Tìm tất cả các giá trị của tham số m để hàm số y = mx3 + mx2 − x + 2 nghịch biến trên R.
A. −4 ≤ m ≤ −1.
B. m > −2.
C. −3 ≤ m ≤ 0.
D. m < 0.
√
Câu 45. Tính đạo hàm của hàm số y = log4 x2 − 1
x
x
1
x
A. y′ =
. B. y′ = 2
.
C. y′ = √
. D. y′ = 2
.
2
2(x − 1) ln 4
(x − 1) ln 4
(x − 1)log4 e
x2 − 1 ln 4
Câu 46. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x + y − 2z + 1 = 0.
A. (x − 1)2 + (y − 2)2 + (z − 4)2 = 3.
B. (x − 1)2 + (y − 2)2 + (z − 4)2 = 2.
C. (x − 1)2 + (y + 2)2 + (z − 4)2 = 1.
D. (x − 1)2 + (y − 2)2 + (z − 4)2 = 1.
Câu 47. Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau. Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
A. 36080253 đồng.
B. 36080255 đồng.
C. 36080254 đồng.
D. 36080251 đồng.
Câu 48. Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N). Diện tích
tồn phầnS tp của hình nón (N) bằng
A. S tp = 2πRl + 2πR2 . B. S tp = πRh + πR2 .
C. S tp = πRl + πR2 .
D. S tp = πRl + 2πR2 .
√
Câu 49. Cho bất phương trình 3 2(x−1)+1 − 3 x ≤ x2 − 4x + 3. Tìm mệnh đề đúng.
A. Bất phương trình đúng với mọi x ∈ (4; +∞).
B. Bất phương trình vơ nghiệm.
C. Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
D. Bất phương trình đúng với mọi x ∈ [ 1; 3].
R
ax + b 2x
Câu 50. Biết a, b ∈ Z sao cho (x + 1)e2x dx = (
)e + C. Khi đó giá trị a + b là:
4
A. 2.
B. 1.
C. 3.
D. 4.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 4/4 Mã đề 001