Tài liệu Pdf miễn phí LATEX
ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001
Câu 1. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3). Biết C là một
điểm trên mặt phẳng (P):x + z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN
để tứ giác ABCD là hình thoi. Tọa độ điểm C là:
21
D. C(6; 21; 21).
A. C(20; 15; 7).
B. C(6; −17; 21).
C. C(8; ; 19).
2
√
′
Câu 2.√Cho lăng trụ đều ABC.A′ B′C ′ có đáy bằng a, AA
=
4
3a. Thể tích khối lăng trụ đã cho là:
√ 3
3
3
A. 8 3a .
B. a .
C. 3a .
D. 3a3 .
Câu 3. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s). Tính
qng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?
A. S = 12 (m).
B. S = 24 (m).
C. S = 20 (m).
D. S = 28 (m).
Câu 4. Tìm tất cả các giá trị của tham số m để hàm số y = xe−x + mx đồng biến trên R.
A. m > e2 .
B. m > 2e .
C. m ≥ e−2 .
D. m > 2.
Câu 5. Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1). Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E.
A. (−2; 0; 0).
B. (0; 6; 0).
C. (0; 2; 0).
D. (0; −2; 0).
Câu 6. Cho lăng trụ đều ABC.A′ B′C ′ có tất cả các cạnh đều bằng a. Tính khoảng cách giữa hai đường
thẳng√AB′ và BC ′ .
√
3a
5a
2a
a
A.
.
B.
.
C. √ .
D. √ .
2
3
5
5
x
Câu 7. Giá trị nhỏ nhất của hàm số y = 2
trên tập xác định của nó là
x +1
1
1
D. min y = − .
A. min y = −1.
B. min y = 0.
C. min y = .
R
R
R
R
2
2
Câu 8. √Cho hai√ số thực a, bthỏa mãn a > b > 0. Kết luận nào sau đây là sai?
√
√
√5
√
A. a− 3 < b− 3 .
B. ea > eb .
C. 5 a < b.
D. a 2 > b 2 .
Câu 9. Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình vng.
Tính thể tích của khối trụ.
A. π .
B. 4π.
C. 3π.
D. 2π.
√
Câu 10. Cho hàm số y = x− 2017 . Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm
số?
A. Khơng có tiệm cận.
B. Có một tiệm cận ngang và khơng có tiệm cận đứng.
C. Khơng có tiệm cận ngang và có một tiệm cận đứng.
D. Có một tiệm cận ngang và một tiệm cận đứng. .
Câu 11. Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − 4 và f (0) = 1, f (1) = 3. Tính f (−1).
A. f (−1) = 3.
B. f (−1) = −3.
C. f (−1) = −5.
D. f (−1) = −1.
Câu 12. Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vng
với cạnh huyền bằng 2a. Tính thể tích của khối nón.
√
√
π.a3
4π 2.a3
π 2.a3
2π.a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Trang 1/4 Mã đề 001
2x + 2017
(1). Mệnh đề nào dưới đây là đúng?
x
+ 1
A. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x = −1..
B. Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y = 2 và khơng có tiệm cận đứng.
C. Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và khơng có tiệm cận
đứng.
D. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng
x = −1, x = 1..
Câu 13. Cho hàm số y =
Câu 14. Cho a, b là hai số thực dương bất kì. Mệnh đề nào dưới đây đúng?
A. ln(ab) = ln a. ln b .
B. ln(ab2 ) = ln a + (ln b)2 .
ln a
a
.
C. ln(ab2 ) = ln a + 2 ln b.
D. ln( ) =
b
ln b
a3
Câu 15. Cho hình chóp đều S .ABCD có cạnh đáy bằng a và thể tích bằng . Tìm góc giữa mặt bên và
6
mặt đáy của hình chóp đã cho.
A. 600 .
B. 1350 .
C. 300 .
D. 450 .
Câu 16. Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − 1 = 0 và mặt phẳng
(P) : x + y − 3z + m − 1 = 0. Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường trịn có bán kính
lớn nhất.
A. m = 7.
B. m = 5.
C. m = −7.
D. m = 9.
Câu 17. Hàm số nào sau đây khơng có cực trị?
A. y = x3 − 6x2 + 12x − 7.
C. y = x2 .
B. y = x4 + 3x2 + 2.
D. y = cos x.
Câu 18. Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng
A. 6πR3 .
B. πR3 .
C. 2πR3 .
D. 4πR3 .
Câu 19. Cho hình lập phương ABCD.A′ B′C ′ D′ . Tính góc giữa hai đường thẳng AC và BC ′ .
A. 450 .
B. 600 .
C. 300 .
D. 360 .
Câu 20. Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm
số y = 3x2 + log3 x + m là:
A. S = (−∞; 2).
B. S = (−∞; ln3).
C. S = [ -ln3; +∞).
D. S = [ 0; +∞).
Câu 21. Cho 0 < a , 1; 0 < x , 2. Đẳng thức nào sau đây là sai?
1
A. loga x2 = 2loga x.
B. loga2 x = loga x .
2
C. aloga x = x.
D. loga (x − 2)2 = 2loga (x − 2).
Câu 22. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Tọa độ của một
véc tơ pháp tuyến của (P) là
A. (−2; −1; 2).
B. (2; −1; −2).
C. (−2; 1; 2).
D. (2; −1; 2).
Câu 23. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3). Biết C là
một điểm trên mặt phẳng (P):x + z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM,
AN để tứ giác ABCD là hình thoi. Tọa độ điểm C là:
21
A. C(20; 15; 7).
B. C(6; −17; 21).
C. C(6; 21; 21).
D. C(8; ; 19).
2
Câu 24. Đồ thị hàm số nào sau đây có vơ số đường tiệm cận đứng?
3x + 1
A. y = x3 − 2x2 + 3x + 2.
B. y =
.
x−1
C. y = tan x.
D. y = sin x .
Câu 25. Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1). Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E.
A. (0; −2; 0).
B. (0; 6; 0).
C. (−2; 0; 0).
D. (0; 2; 0).
Trang 2/4 Mã đề 001
Câu 26. Tứ diện OABC có OA = OB = OC = a và đơi một vng góc. Gọi M, N, P lần lượt là trung
điểm AB, BC, CA. Thể tích tứ diện OMNP là
a3
a3
a3
a3
B. .
C. .
D. .
A. .
6
4
24
12
Câu 27. Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2). Tìm tọa độ D để ABCD là hình bình
hành.
A. (1; −1; 1).
B. (1; −2; −3).
C. (−1; 1; 1).
D. (1; 1; 3).
1 3 2
x −2x +3x+1
. Mệnh đề nào dưới đây đúng?
Câu 28. Cho hàm số f (x) = e 3
A. Hàm số đồng biến trên khoảng (−∞; 1) và (3; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 1) và (3; +∞).
C. Hàm số đồng biến trên khoảng(−∞; 1) và nghịch biến trên khoảng(3; +∞).
D. Hàm số nghịch biến trên khoảng(−∞; 1) và đồng biến trên khoảng(3; +∞).
Câu 29. Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1;
Độ dài đường cao AH của tứ diện ABCD là:
A. 7 .
B. 5 .
C. 6.
D. 9 .
Câu 30. Cho hình chóp S .ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a,
d = 600 . Tính thể tích khối cầu ngoại tiếp hình chóp S .ABC.
BAC
√
√
√
20 5πa3
5 5π 3
5 3
5 5 3
.
B. V =
a.
C. V = πa .
D. V =
πa .
A. V =
3
2
6
6
√
Câu 31. Cho hình chóp S .ABC có S A⊥(ABC), S A = a 3. Tam giác ABC vuông cân tại B, AC = 2a.
Thể tích√khối chóp S .ABC là
√
√
3
3
√
a3 3
2a
3
a
3
A.
.
B. a3 3 .
C.
.
D.
.
3
3
6
Câu 32. Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 . Khi t = 0 thì vận tốc của vật là 30 (m/s).
Quãng đường vật đó đi được sau 2 giây gần với giá trị nào nhất sau đây?
A. 47m.
B. 49m.
C. 50m.
D. 48m.
Câu 33. Cho một hình trụ (T ) có chiều cao và bán kính đều bằng 3a Một hình vng ABCD có hai cạnh
AB, CD lần lượt là hai dây cung của hai đường trịn đáy, cạnh AD, BC khơng phải là đường sinh của
hình trụ (T ). Tính cạnh của hình vng này.
√
√
3a 10
A. 6a.
B. 3a.
C. 3a 5.
D.
.
2
Câu 34. Trong không gian với hệ trục tọa độ Oxyz, gọi (P)
√ là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)
3 2
và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng
. Giả sử phương trình mặt phẳng (P) có dạng
2
ax + by + cz + 2 = 0. Tính giá trị abc.
A. 2.
B. −2.
C. −4.
D. 4.
Câu 35. Cho hàm số y = x2 − x + m có đồ thị là (C). Tìm tất cả các giá trị của tham số m để tiếp tuyến
của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2).
A. m = 4.
B. m = 3.
C. m = 1.
D. m = 2.
Câu 36. Tìm tất cả các giá trị của tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhất và nhỏ nhất
trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b = −36.
A. m = 0 hoặc m = −10.
B. m = 1.
C. m = 0 hoặc m = −16.
D. m = 4.
Câu 37. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vng góc với mặt phẳng
(ABC),
√ S A = 2a. Gọi α là số đo
√ góc giữa đường thẳng S√B và mp(S AC). Tính giá trị sin α.
5
15
15
1
A.
.
B.
.
C.
.
D. .
3
10
5
2
Trang 3/4 Mã đề 001
Câu 38. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng
x = −1; x = 2.
29
23
27
25
B.
.
C. .
D. .
A. .
4
4
4
4
Câu 39. Cho tứ diện DABC, tam giác ABC vng tại B, DA vng góc với mặt phẳng (ABC). Biết
AB = 3a,
hình chóp DABC có bán √
kính bằng
√ BC = 4a, DA = 5a. Bán√kính mặt cầu ngoại tiếp √
5a 3
5a 3
5a 2
5a 2
A.
.
B.
.
C.
.
D.
.
3
2
3
2
Câu 40. Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N). Diện tích
tồn phầnS tp của hình nón (N) bằng
A. S tp = πRl + 2πR2 .
B. S tp = 2πRl + 2πR2 . C. S tp = πRh + πR2 .
D. S tp = πRl + πR2 .
Câu 41. Chọn mệnh đề đúng trong các mệnh đề sau:
R3
R2
R3
A. |x2 − 2x|dx = − (x2 − 2x)dx + (x2 − 2x)dx.
1
B.
C.
D.
R3
1
2
R2
|x2 − 2x|dx = (x2 − 2x)dx −
R3
1
1
2
R3
R2
R3
|x2 − 2x|dx = (x2 − 2x)dx +
1
1
2
R3
R2
R3
1
2
1
|x2 − 2x|dx = |x2 − 2x|dx −
(x2 − 2x)dx.
(x2 − 2x)dx.
|x2 − 2x|dx.
Câu 42. Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A. y = x3 − 3x2
B. y = −x4 + 2x2 + 8. C. y = −x4 + 2x2 .
.
D. y = −2x4 + 4x2 .
Câu 43. Tìm tất cả các giá trị của tham số m để hàm số y = mx3 + mx2 − x + 2 nghịch biến trên R.
A. m > −2.
B. m < 0.
C. −4 ≤ m ≤ −1.
D. −3 ≤ m ≤ 0.
Câu 44. Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC là tam giác tù, AB = AC. Góc tạo bởi hai
đường thẳng AA′ và BC ′ bằng 300 ; khoảng cách giữa AA′ và BC ′ bằng a; góc giữa hai mặt phẳng
(ABB′ A′ √
) và (ACC ′ A′ ) bằng 600 . Tính
thể tích khối lăng trụ√ABC.A′ B′C ′ .
√
√
B. 3a3 3.
C. 9a3 3.
D. 6a3 3.
A. 4a3 3.
r
3x + 1
Câu 45. Tìm tập xác định D của hàm số y = log2
x−1
A. D = (−1; 4).
B. D = (−∞; −1] ∪ (1; +∞).
C. D = (1; +∞).
D. D = (−∞; 0).
√
2x − x2 + 3
Câu 46. Đồ thị hàm số y =
có số đường tiệm cận đứng là:
x2 − 1
A. 1.
B. 0.
C. 3.
D. 2.
Câu 47. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
−u (2; 3; −5).
qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là →
x = 1 − 2t
x = 1 + 2t
x = −1 + 2t
x = 1 + 2t
y
=
−2
+
3t
y
=
−2
+
3t
y
=
2
+
3t
y
= −2 − 3t .
A.
.
B.
.
C.
.
D.
z = 4 − 5t
z = −4 − 5t
z = 4 − 5t
z = 4 + 5t
Câu 48. Cho P = 2a 4b 8c , chọn mệnh đề đúng trong các mệnh đề sau.
A. P = 2a+b+c .
B. P = 2abc .
C. P = 2a+2b+3c .
D. P = 26abc .
Câu 49. Chọn mệnh đề đúng trong các mệnh đề sau:
A. Nếu a > 0 thì a x = ay ⇔ x = y.
B. Nếu a > 1 thì a x > ay ⇔ x > y.
x
y
C. Nếu a < 1 thì a > a ⇔ x < y.
D. Nếu a > 0 thì a x > ay ⇔ x < y.
Trang 4/4 Mã đề 001