Tài liệu Pdf miễn phí LATEX
ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001
x
trên tập xác định của nó là
Câu 1. Giá trị nhỏ nhất của hàm số y = 2
x +1
1
1
A. min y = −1.
B. min y = − .
C. min y = .
D. min y = 0.
R
R
R
R
2
2
ax + b
Câu 2. Cho hàm số y =
có đồ thị như hình vẽ bên. Kết luận nào sau đây là sai?
cx + d
A. ad > 0 .
B. ab < 0 .
C. ac < 0.
D. bc > 0 .
Câu 3. Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =
x3 + 6x2 + mx − 2 đi qua điểm (11;1)?
A. m = −15.
B. m = 13.
C. m = 3.
D. m = −2.
Câu 4. Cho hình chóp đều S .ABCcó cạnh đáy bằng a và cạnh bên bằng
tích của khối chóp là:
q b. Thể
√
√
a2 b2 − 3a2
3ab2
.
B. VS .ABC =
.
A. VS .ABC =
12
12
√
√
3a2 b
a2 3b2 − a2
.
D. VS .ABC =
.
C. VS .ABC =
12
12
√
Câu 5. Cho hình phẳng (D) giới hạn bởi các đường y = x, y = x, x = 2 quay quanh trục hồnh. Tìm
thể tích V của khối trịn xoay tạo thành?
10π
π
A. V =
.
B. V = 1.
C. V = .
D. V = π.
3
3
Câu 6. Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − 5 = 0. Bán kính R
của (S) bằng bao nhiêu?
√
√
C. R = 3.
D. R = 29.
A. R = 9.
B. R = 21.
Câu 7. Số nghiệm của phương trình 9 x + 5.3 x − 6 = 0 là
A. 4.
B. 1.
C. 0.
√
D. 2.
′ ′ ′
′
Câu 8.√Cho lăng trụ đều ABC.A
trụ đã cho là:
√ B3 C có đáy bằng a, AA3 = 4 3a. Thể tích khối lăng
3
A. 8 3a .
B. 3a .
C. a .
D. 3a3 .
√
√
Câu 9. Cho hình chóp S .ABC có S A⊥(ABC). Tam giác ABC vuông cân tại B và S A = a 6, S B = a 7.
Tính góc giữa SC và mặt phẳng (ABC).
A. 450 .
B. 300 .
C. 600 .
D. 1200 .
Câu 10. Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y = x3 +x2 và y = x2 +3x+mcắt
nhau tại nhiều điểm nhất.
A. m = 2.
B. −2 ≤ m ≤ 2.
C. 0 < m < 2.
D. −2 < m < 2.
√
Câu 11. Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a 3. Tính khoảng cách giữa hai
đường √
thẳng BB′ và AC ′ .
√
√
√
a 2
a 3
a 3
A.
.
B.
.
C.
.
D. a 3.
2
4
2
Câu 12. Tìm tất cả các giá trị của tham số m để hàm số y = mx − sin xđồng biến trên R.
A. m > 1.
B. m ≥ 0.
C. m ≥ −1.
D. m ≥ 1.
Câu 13. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − 1 = 0. Viết phương trình
mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P).
1
1
A. (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = .
B. (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = .
3
3
C. (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3.
D. (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3.
Trang 1/4 Mã đề 001
Câu 14. Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − 1 = 0 và mặt phẳng
(P) : x + y − 3z + m − 1 = 0. Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường trịn có bán kính
lớn nhất.
A. m = 9.
B. m = 7.
C. m = 5.
D. m = −7.
y+2
z
x−1
=
= . Viết phương
Câu 15. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
1
−1
2
trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d.
A. (P) : x − 2y − 2 = 0. B. (P) : x + y + 2z = 0. C. (P) : x − y + 2z = 0. D. (P) : x − y − 2z = 0.
Câu 16. Cho x, y, z là ba số thực khác 0 thỏa mãn 2 x = 5y = 10−z . Giá trị của biểu thức A = xy + yz +
zxbằng?
A. 0.
B. 2.
C. 3.
D. 1.
ax + b
có đồ thị như hình vẽ bên. Kết luận nào sau đây là sai?
Câu 17. Cho hàm số y =
cx + d
A. bc > 0 .
B. ac < 0.
C. ad > 0 .
D. ab < 0 .
x
trên tập xác định của nó là
Câu 18. Giá trị nhỏ nhất của hàm số y = 2
x +1
1
1
A. min y = − .
B. min y = 0.
C. min y = −1.
D. min y = .
R
R
R
R
2
2
Câu 19. Phương trình tiếp tuyến với đồ thị hàm số y = log5 x tại điểm có hồnh độ x = 5 là:
x
x
1
A. y =
+ 1.
B. y =
−
.
5 ln 5
5 ln 5 ln 5
x
1
x
1
C. y =
+1−
.
D. y =
−1+
.
5 ln 5
ln 5
5 ln 5
ln 5
Câu 20. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s).
Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động.
A. S = 24 (m).
B. S = 28 (m).
C. S = 20 (m).
D. S = 12 (m).
Câu 21. Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng
A. πR3 .
B. 6πR3 .
C. 4πR3 .
D. 2πR3 .
−u (2; −2; 1), kết luận nào sau đây đúng?
Câu 22. Trong không gian với hệ tọa độ Oxyz cho →
−u | = 9.
−u | = 3.
−u | = 1.
−u | = √3.
A. |→
B. |→
C. |→
D. |→
Câu 23. Số nghiệm của phương trình 9 x + 5.3 x − 6 = 0 là
A. 4.
B. 0.
C. 2.
D. 1.
Câu 24. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
A. 1.
B. 0.
C. .
D. −6.
6
Câu 25. Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1). Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E.
A. (0; 6; 0).
B. (−2; 0; 0).
C. (0; −2; 0).
D. (0; 2; 0).
1
1
Câu 26. Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x3 − (m − 2)x2 + (m − 2)x + m2 có
3
3
hai điểm cực trị nằm về phía bên phải trục tung?
A. m > 3.
B. m > 3 hoặc m < 2. C. m > 2.
D. m < 2.
Câu 27. Cho a > 1, a , 0 Tìm mệnh đề đúng trong các mệnh đề sau:
A. loga xn = log 1 x , (x > 0, n , 0).
B. loga 1 = a và loga a = 0.
an
C. loga x có nghĩa với ∀x ∈ R.
D. loga (xy) = loga x.loga y.
1
1
1
+
+ ... +
ta được:
loga x loga2 x
logak x
4k(k + 1)
k(k + 1)
B. M =
.
C. M =
.
loga x
loga x
Câu 28. Rút gọn biểu thức M =
A. M =
k(k + 1)
.
3loga x
D. M =
k(k + 1)
.
2loga x
Trang 2/4 Mã đề 001
Câu 29. Một thùng đựng nước có dạng hình trụ có chiều cao h và bán kính đáy√bằng R. Khi đặt thùng
R 3
nước nằm ngang như hình 1 thì khoảng cách từ trục hình trụ tới mặt nước bằng
(mặt nước thấp hơn
2
trục của hình trụ). Khi đặt thùng nước thẳng đứng như hình 2 thì chiều cao của mực nước trong thùng là
h1
h1 . Tính tỉ số
h
√
√
√
√
3
π− 3
2π − 3
2π − 3 3
.
B.
.
C.
.
D.
.
A.
4
6
12
12
√3
a2 b
Câu 30. Biết loga b = 2, loga c = 3 với a, b, c > 0; a , 1. Khi đó giá trị của loga (
) bằng
c
2
1
A. 5.
B. .
C. 6.
D. − .
3
3
Câu 31. Nguyên hàm F(x) của hàm số f (x) = 2x2 + x3 − 4 thỏa mãn điều kiện F(0) = 0 là
x4
2
x4
2
− 4x + 4. D. x3 +
− 4x.
A. x3 − x4 + 2x.
B. 2x3 − 4x4 .
C. x3 +
3
4
3
4
Câu 32. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
A. .
B. 1.
C. −6.
D. 0.
6
Câu 33. Người ta cần cắt một tấm tơn có hình dạng là một elíp với độ dài trục lớn bằng 2a, độ dài trục
bé bằng 2b (a > b > 0) để được một tấm tơn có dạng hình chữ nhật nội tiếp elíp. Người ta gị tấm tơn
hình chữ nhật thu được thành một hình trụ khơng có đáy như hình bên. Tính thể tích lớn nhất có thể được
của khối trụ thu được.
2a2 b
2a2 b
4a2 b
4a2 b
B. √ .
C. √ .
D. √ .
A. √ .
3 3π
3 3π
3 2π
3 2π
x2 + mx + 1
đạt cực tiểu tại điểm x = 0.
x+1
C. m = −1.
D. Khơng có m.
Câu 34. Tìm tất cả các giá trị của tham số m để hàm số y =
A. m = 1.
B. m = 0.
Câu 35. Cho hàm số y = x2 − x + m có đồ thị là (C). Tìm tất cả các giá trị của tham số m để tiếp tuyến
của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2).
A. m = 4.
B. m = 3.
C. m = 1.
D. m = 2.
√
Câu 36. Cho bất phương trình 3 2(x−1)+1 − 3 x ≤ x2 − 4x + 3. Tìm mệnh đề đúng.
A. Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
B. Bất phương trình đúng với mọi x ∈ [ 1; 3].
C. Bất phương trình đúng với mọi x ∈ (4; +∞).
D. Bất phương trình vơ nghiệm.
Câu 37. Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + 1 có hai điểm
cực trị nằm về hai phía trục Ox.
1
A. m > 1 hoặc m < − . B. m > 2 hoặc m < −1. C. m < −2.
D. m > 1.
3
r
3x + 1
Câu 38. Tìm tập xác định D của hàm số y = log2
x−1
A. D = (−∞; 0).
B. D = (−1; 4) ———————————————– .
C. D = (−∞; −1] ∪ (1; +∞).
D. D = (1; +∞).
√
Câu 39. Tính đạo hàm của hàm số y = log4 x2 − 1
1
x
x
x
A. y′ = √
. B. y′ =
. C. y′ = 2
.
D. y′ = 2
.
2
2(x − 1) ln 4
(x − 1) ln 4
(x − 1)log4 e
x2 − 1 ln 4
Trang 3/4 Mã đề 001
Câu 40. Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình
x2 + y2 + √
z2 − 4x − 6y + 2z − 1 = 0.
√
B. R = 3.
C. R = 15.
D. R = 4.
A. R = 14.
Câu 41. Cho hình√chóp S .ABCD có đáy ABCD là hình vng. Cạnh S A vng góc với mặt phẳng
(ABCD); S A = 2a 3. Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 . Gọi M, N lần lượt là trung
điểm hai√cạnh AB, AD. Tính khoảng
√ cách giữa hai đường√thẳng MN và S C.
√
3a 6
a 15
3a 6
3a 30
.
B.
.
C.
.
D.
.
A.
10
8
2
2
Câu 42. Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A. y = −2x4 + 4x2 .
B. y = −x4 + 2x2 + 8. C. y = −x4 + 2x2 .
D. y = x3 − 3x2
.
3
2
Câu 43. Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x + 3mx − 3mx + 1 có hai điểm
cực trị nằm về hai phía trục Ox.
1
A. m > 2 hoặc m < −1. B. m > 1.
C. m < −2.
D. m > 1 hoặc m < − .
3
→
−
→
−
Câu 44. Trong không gian với hệ trục tọa độ Oxyz, cho u = (2; 1; 3), v = (−1; 4; 3). Tìm tọa độ của
−u + 3→
−v .
véc tơ 2→
→
−
→
−
−u + 3→
−v = (1; 14; 15).
A. 2 u + 3 v = (3; 14; 16).
B. 2→
−u + 3→
−v = (1; 13; 16).
−u + 3→
−v = (2; 14; 14).
C. 2→
D. 2→
Câu 45. Tìm tất cả các giá trị của tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhất và nhỏ nhất
trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b = −36.
A. m = 1.
B. m = 4.
C. m = 0 hoặc m = −10.
D. m = 0 hoặc m = −16.
Câu 46. Tính thể tích của khối trịn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2 ,
trục Ox và hai đường thẳng x = −1; x = 2 quay quanh trục Ox.
32π
33π
31π
.
B. 6π.
C.
.
D.
.
A.
5
5
5
Câu 47. Chọn mệnh đề đúng trong các mệnh đề sau:
R3
R2
R3
A. |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx.
B.
C.
1
1
R3
R2
|x2 − 2x|dx = (x2 − 2x)dx −
R3
1
1
2
R3
R2
R3
|x2 − 2x|dx = (x2 − 2x)dx +
1
D.
2
R3
1
1
|x − 2x|dx = −
2
(x2 − 2x)dx.
(x2 − 2x)dx.
2
R2
(x − 2x)dx +
2
1
R3
(x2 − 2x)dx.
2
Câu 48. Biết a, b ∈ Z sao cho (x + 1)e2x dx = (
A. 4.
B. 1.
R
ax + b 2x
)e + C. Khi đó giá trị a + b là:
4
C. 2.
D. 3.
Câu 49. Trong không gian với hệ trục tọa độ Oxyz, gọi (P)
√ là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)
3 2
và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng
. Giả sử phương trình mặt phẳng (P) có dạng
2
ax + by + cz + 2 = 0. Tính giá trị abc.
A. −2.
B. −4.
C. 2.
D. 4.
Câu 50. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng
x = −1; x = 2.
27
23
25
29
A. .
B.
.
C. .
D. .
4
4
4
4
- - - - - - - - - - HẾT- - - - - - - - - Trang 4/4 Mã đề 001