Tải bản đầy đủ (.pdf) (4 trang)

Đề ôn khảo sát chất lượng thptqg môn toán (836)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (122.63 KB, 4 trang )

Tài liệu Pdf miễn phí LATEX

ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001

Câu 1. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3). Biết C là một
điểm trên mặt phẳng (P):x + z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN
để tứ giác ABCD là hình thoi. Tọa độ điểm C là:
21
A. C(6; −17; 21).
B. C(20; 15; 7).
C. C(6; 21; 21).
D. C(8; ; 19).
2
2
2
2
Câu 2. Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x + y + z − 4z − 5 = 0. Bán kính R
của (S) bằng bao nhiêu?


A. R = 3.
B. R = 29.
C. R = 21.
D. R = 9.
ax + b
Câu 3. Cho hàm số y =
có đồ thị như hình vẽ bên. Kết luận nào sau đây là sai?


cx + d
A. ab < 0 .
B. bc > 0 .
C. ac < 0.
D. ad > 0 .
Câu 4. Tìm tất cả các giá trị của tham số m để hàm số y = (1 − m)x4 + 3x2 chỉ có cực tiểu mà khơng có
cực đại
A. m ≤ 1.
B. m > 1.
C. m ≥ 1.
D. m < 1.

x
Câu 5. Đồ thị hàm số y = ( 3 − 1) có dạng nào trong các hình H1, H2, H3, H4 sau đây?
A. (H2) .
B. (H3).
C. (H1).
D. (H4).
Câu R6. Công thức nào sai?
A. R cos x = sin x + C.
C. a x = a x . ln a + C.

R
B. R sin x = − cos x + C.
D. e x = e x + C.

Câu 7. Cho hình phẳng (D) giới hạn bởi các đường y = x, y = x, x = 2 quay quanh trục hồnh. Tìm
thể tích V của khối tròn xoay tạo thành?
π
10π

.
D. V = .
A. V = π.
B. V = 1.
C. V =
3
3
3
Câu 8. Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) và đáy
2
là đường trịn nằm hồn tồn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn
nhất.



4 3π

A. 4 3π.
B. 2 3π.
C. √ .
D.
.
3
3
R
Câu R9. Biết f (u)du = F(u) + C Mệnh đề nào dưới đây
R đúng?
A. f (2x − 1)dx = 2F(x) − 1 + C.
B. f (2x − 1)dx = F(2x − 1) + C.
R

R
1
D. f (2x − 1)dx = 2F(2x − 1) + C.
C. f (2x − 1)dx = F(2x − 1) + C .
2

Câu 10. Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a 3. Tính khoảng cách giữa hai
đường thẳng BB′ và AC ′ .




a 2
a 3
a 3
A. a 3.
B.
.
C.
.
D.
.
2
4
2
Câu 11. Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng
biến thiên như hình bên. Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân
biệt.
S
S

7
7
7
A. ( ; 2] [22; +∞) . B. ( ; +∞)
C. [ ; 2] [22; +∞).
D. [22; +∞).
4
4
4
.
Trang 1/4 Mã đề 001


Câu 12. Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét. Khi đó hình thang đã
cho có diện tích lớn nhất bằng? √


3
3
3
3 2
(m2 ).
C.
(m ).
D. 3 3(m2 ).
A. 1 (m2 ).
B.
4
2
Câu 13. Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2). Tìm tọa độ

điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450 .
A. C(3; 7; 4).
B. C(−3; 1; 1).
C. C(1; 5; 3).
D. C(5; 9; 5).
Câu 14. Đường cong trong hình bên là đồ thị của hàm số nào?
A. y = x4 + 2x2 + 1 .
B. y = −x4 + 1 .
C. y = −x4 + 2x2 + 1 .

D. y = x4 + 1.

Câu 15. Cho a, b là hai số thực dương bất kì. Mệnh đề nào dưới đây đúng?
A. ln(ab2 ) = ln a + 2 ln b.
B. ln(ab) = ln a. ln b .
ln a
a
.
C. ln(ab2 ) = ln a + (ln b)2 .
D. ln( ) =
b
ln b
Câu 16. Tìm giá trị cực đại yCD của hàm số y = x3 − 12x + 20.
A. yCD = 36.
B. yCD = −2.
C. yCD = 4.

D. yCD = 52.

Câu 17. Tìm tất cả các giá trị của tham số m để hàm số y = (1 − m)x4 + 3x2 chỉ có cực tiểu mà khơng có

cực đại
A. m ≥ 1.
B. m < 1.
C. m > 1.
D. m ≤ 1.
Câu 18. Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu
(S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S)
theo dây cung dài nhất.
A. x = 3 + 2ty = 4 + tz = 6.
B. x = 5 + ty = 5 + 2tz = 2.
C. x = 5 + 2ty = 5 + tz = 2 − 4t.
D. x = 5 + 2ty = 5 + tz = 2.
π
π
π
x
và F( ) = √ . Tìm F( ).
Câu 19. Biết F(x) là một nguyên hàm của hàm số f (x) =
2
cos x
3
4
3
π
π ln 2
π
π ln 2
π
π ln 2
π

π ln 2
A. F( ) = −
.
B. F( ) = +
.
C. F( ) = −
.
D. F( ) = +
.
4
4
2
4
4
2
4
3
2
4
3
2
3
Câu 20. Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) và đáy
2
là đường trịn nằm hồn tồn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn
nhất.



4 3π


A. √ .
B. 2 3π.
C.
.
D. 4 3π.
3
3

x
Câu 21. Đồ thị hàm số y = ( 3 − 1) có dạng nào trong các hình H1, H2, H3, H4 sau đây?
A. (H4).
B. (H1).
C. (H3).
D. (H2).
Câu 22. Cho hàm số y =
A. ab < 0 .

ax + b
có đồ thị như hình vẽ bên. Kết luận nào sau đây là sai?
cx + d
B. ac < 0.
C. ad > 0 .
D. bc > 0 .

Câu 23. Một mặt cầu có diện tích bằng 4πR2 thì thể tích của khối cầu đó là
4
3
A. πR3 .
B. πR3 .

C. πR3 .
D. 4πR3 .
3
4
Câu 24. Đồ thị hàm số nào sau đây có vơ số đường tiệm cận đứng?
3x + 1
A. y = x3 − 2x2 + 3x + 2.
B. y =
.
x−1
C. y = sin x .
D. y = tan x.
Câu 25. Tìm tất cả các giá trị của tham số m để hàm số y = xe−x + mx đồng biến trên R?
A. m > 2e .
B. m > 2.
C. m > e2 .
D. m ≥ e−2 .
Trang 2/4 Mã đề 001


Câu 26. Tính thể tích khối trịn xoay khi quay xung quanh trục hồnh hình phẳng giới hạn bởi các đường
1
y = , x = 1, x = 2 và trục hoành.
x

π
π

A. V =
.

B. V = .
C. V = .
D. V =
.
2
2
3
5
Câu 27. Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính
đường√trịn nội tiếp tam giác ABC
√ bằng


B. 4 2.
C. 3.
D. 5.
A. 2 5.
Câu 28. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = 0 và
mặt phẳng (P) có phương trình x + y + z − 4 = 0. Mặt phẳng (P) cắt mặt cầu (S) theo một đường trịn có
chu vi √
là:
A. 4 3π.
B. 8π.
C. 2π.
D. 4π.
1
1
1
Câu 29. Rút gọn biểu thức M =
+

+ ... +
ta được:
loga x loga2 x
logak x
k(k + 1)
k(k + 1)
4k(k + 1)
k(k + 1)
A. M =
.
B. M =
.
C. M =
.
D. M =
.
3loga x
2loga x
loga x
loga x
Câu 30. Cho một hình trụ (T ) có chiều cao và bán kính đều bằng 3a Một hình vng ABCD có hai cạnh
AB, CD lần lượt là hai dây cung của hai đường trịn đáy, cạnh AD, BC khơng phải là đường sinh của
hình trụ (T ). Tính cạnh của hình √
vng này.

3a 10
.
C. 3a 5.
A. 6a.
B.

D. 3a.
2
Câu 31. Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước. Người ta thả vào đó một
khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngồi là 18π
(dm3). Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa khối cầu chìm
trong nước. Tính thể tích nước cịn lại trong bình.
A. 24π(dm3 ).
B. 54π(dm3 ).
C. 6π(dm3 ).
D. 12π(dm3 ).
Câu 32. Cho hình chóp S.ABC có đáy ABC là tam giác vng cân với BA = BC = a, S A = a và vng
góc với
√ (SAC) và (SBC) bằng?
√ mặt phẳng đáy. Tính cơsin
√ góc giữa hai mặt phẳng
2
3
2
1
.
B.
.
C.
.
D. .
A.
3
2
2
2

Câu 33. Họ nguyên hàm của hàm số y = (x − 1)e x là:
A. (x − 2)e x + C.
B. xe x + C.
C. (x − 1)e x + C.

D. xe x−1 + C.

Câu 34. Hình phẳng giới hạn bởi đồ thị hàm y = x2 +1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
1
1
1
1
A. .
B.
.
C. .
D. .
3
12
6
4
Câu 35. Cho P = 2a 4b 8c , chọn mệnh đề đúng trong các mệnh đề sau.
A. P = 26abc .
B. P = 2a+b+c .
C. P = 2abc .

2x − x2 + 3
Câu 36. Đồ thị hàm số y =
có số đường tiệm cận đứng là:

x2 − 1
A. 3.
B. 0.
C. 1.

D. P = 2a+2b+3c .

D. 2.

Câu 37. Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vng. Diện tích tồn phần của (T ) là
A. 12π.
B. 8π.
C. 6π.
D. 10π.
Câu 38. Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + 1 có hai điểm
cực trị nằm về hai phía trục Ox.
1
A. m < −2.
B. m > 1.
C. m > 2 hoặc m < −1. D. m > 1 hoặc m < − .
3
Trang 3/4 Mã đề 001


Câu 39. Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
AA′ =√2a. Gọi α là số đo góc giữa hai đường thẳng AC √
và DB′ . Tính giá trị cos α.√
3
1

3
5
.
B. .
C.
.
D.
.
A.
2
2
4
5
Câu 40. Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x trên đoạn [−1; 2] lần lượt là M, m.
Tính M + m.
A. 4.
B. 5.
C. 6.
D. 3.
Câu 41. Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N). Diện tích
tồn phầnS tp của hình nón (N) bằng
A. S tp = πRl + 2πR2 .
B. S tp = πRl + πR2 .
C. S tp = πRh + πR2 .
D. S tp = 2πRl + 2πR2 .
Câu 42. Cho hình√chóp S .ABCD có đáy ABCD là hình vng. Cạnh S A vng góc với mặt phẳng
(ABCD); S A = 2a 3. Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 . Gọi M, N lần lượt là trung
điểm hai
MN và S C.
√ cách giữa hai đường thẳng


√ cạnh AB, AD. Tính khoảng

3a 6
3a 6
3a 30
a 15
.
B.
.
C.
.
D.
.
A.
2
2
8
10
x2 + mx + 1
Câu 43. Tìm tất cả các giá trị của tham số m để hàm số y =
đạt cực tiểu tại điểm x = 0.
x+1
A. m = 1.
B. m = −1.
C. m = 0.
D. Khơng có m.
Câu 44. Cho tứ diện DABC, tam giácABC là vuông tại B, DA vng góc với mặt phẳng (ABC). Biết
AB = 3a,
hình chóp DABC có bán √

kính bằng
√ BC = 4a, DA = 5a. Bán√kính mặt cầu ngoại tiếp √
5a 2
5a 3
5a 2
5a 3
.
B.
.
C.
.
D.
.
A.
2
2
3
3
r
3x + 1
Câu 45. Tìm tập xác định D của hàm số y = log2
x−1
A. D = (1; +∞).
B. D = (−∞; −1] ∪ (1; +∞).
C. D = (−1; 4).
D. D = (−∞; 0).
Câu 46. Hàm số y = x3 − 3x2 + 1 có giá trị cực đại là:
A. −3.
B. 4.
C. 2.


D. 1.

Câu 47. Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC là tam giác tù, AB = AC. Góc tạo bởi hai
đường thẳng AA′ và BC ′ bằng 300 ; khoảng cách giữa AA′ và BC ′ bằng a; góc giữa hai mặt phẳng
′ ′ ′
(ABB′ A′ √
) và (ACC ′ A′ ) bằng 600 . Tính
√ thể tích khối lăng trụ
√ABC.A B C .

3
3
3
B. 3a 3.
C. 6a 3.
D. 4a3 3.
A. 9a 3.

2x − x2 + 3
Câu 48. Đồ thị hàm số y =
có số đường tiệm cận đứng là:
x2 − 1
A. 2.
B. 1.
C. 0.
D. 3.
0
d
Câu 49. Cho hình chóp S .ABC có đáy ABC

√ là tam giác vuông tại A; BC = 2a; ABC = 60 . Gọi Mlà
trung điểm
= S M = a 5. Tính khoảng cách từ S đến mặt phẳng (ABC).
√ cạnh BC, S A = S C √
A. a 3.
B. a 2.
C. a.
D. 2a.
−u = (2; 1; 3),→
−v = (−1; 4; 3). Tìm tọa độ của
Câu 50. Trong khơng gian với hệ trục tọa độ Oxyz, cho →




véc tơ 2 u + 3 v .
−u + 3→
−v = (2; 14; 14).
−u + 3→
−v = (1; 13; 16).
A. 2→
B. 2→
−u + 3→
−v = (1; 14; 15).
−u + 3→
−v = (3; 14; 16).
C. 2→
D. 2→
- - - - - - - - - - HẾT- - - - - - - - - -


Trang 4/4 Mã đề 001



×