Tài liệu Pdf miễn phí LATEX
ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001
Câu 1.√ Bất đẳng thức
√ nào πsau đây là đúng?
e
A. ( 3 − 1) < ( 3 − 1) .
C. 3π < 2π .
√
√
π
e
B. ( 3 + 1) > ( 3 + 1) .
D. 3−e > 2−e .
Câu 2. Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD là hình bình hành. Hình chiếu vng góc của A′
lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc giữa mặt
bên (ABB′ A′ ) và mặt đáy bằng 450 . Tính thể tích khối tứ diện ACB′ D′ theo a.
A. 60a3 .
B. 20a3 .
C. 30a3 .
D. 100a3 .
Câu 3. Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng
A. πR3 .
B. 4πR3 .
C. 2πR3 .
D. 6πR3 .
Câu 4. Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y = −x2 + 2mx − 1 − 2m trên
đoạn [−1; 2] nhỏ hơn 2.
7
B. m ≥ 0.
C. m ∈ (0; 2).
D. m ∈ (−1; 2).
A. −1 < m < .
2
Câu 5. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Tọa độ của một véc
tơ pháp tuyến của (P) là
A. (2; −1; 2).
B. (−2; 1; 2).
C. (2; −1; −2).
D. (−2; −1; 2).
Câu 6. Cho hình
đều S .ABCcó cạnh đáy bằng a và cạnh bên bằng
√ b. Thể tích của khối chóp là:
√ chóp
2
2
3a b
a 3b2 − a2
A. VS .ABC =
.
B. VS .ABC =
.
12
12
q
√
√
a2 b2 − 3a2
3ab2
.
D. VS .ABC =
.
C. VS .ABC =
12
12
Câu 7. Cho a > 1; 0 < x < y. Bất đẳng thức nào sau đây là đúng?
A. log 1 x > log 1 y.
B. log x > log y.
C. loga x > loga y.
a
D. ln x > ln y.
a
Câu 8. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s). Tính
quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?
A. S = 24 (m).
B. S = 20 (m).
C. S = 28 (m).
D. S = 12 (m).
Câu 9. Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh bằng a. Tính thể tích khối chóp D.ABC ′ D′ .
a3
a3
a3
a3
B. .
C. .
D. .
A. .
4
3
6
9
Câu 10. Cho hàm số y = x3 + 3x2 − 9x − 2017. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−3; 1).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; −3).
D. Hàm số đồng biến trên khoảng (−3; 1).
√
Câu 11. Cho hàm số y = x− 2017 . Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm
số?
A. Khơng có tiệm cận.
B. Có một tiệm cận ngang và một tiệm cận đứng. .
C. Có một tiệm cận ngang và khơng có tiệm cận đứng.
D. Khơng có tiệm cận ngang và có một tiệm cận đứng.
Trang 1/4 Mã đề 001
Câu 12. Cho a, b là hai số thực dương bất kì. Mệnh đề nào dưới đây đúng?
A. ln(ab2 ) = ln a + 2 ln b.
B. ln(ab2 ) = ln a + (ln b)2 .
a
ln a
C. ln( ) =
.
D. ln(ab) = ln a. ln b .
b
ln b
Câu 13. Giá trị nhỏ nhất của hàm số y = 2x + cos xtrên đoạn [0; 1] bằng?
A. 1.
B. −1.
C. π.
D. 0.
Câu 14. Tìm tất cả các giá trị của tham số m để hàm số y = mx − sin xđồng biến trên R.
A. m ≥ 1.
B. m ≥ 0.
C. m ≥ −1.
D. m > 1.
Câu 15. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = 1 + 2ty = 2 + (m − 1)tz = 3 − t.
Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?
A. m , −1.
B. m = 1.
C. m , 1.
D. m , 0.
Câu 16. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4). Tìm tọa độ trung
điểm I của đoạn thẳng AB.
A. I(1; 1; 2).
B. I(0; −1; 2).
C. I(0; 1; 2).
D. I(0; 1; −2).
−u (2; −2; 1), kết luận nào sau đây đúng?
Câu 17. Trong không gian với hệ tọa độ Oxyz cho →
−u | = 9.
−u | = 3.
−u | = 1.
−u | = √3.
A. |→
B. |→
C. |→
D. |→
Câu 18. Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu
(S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S)
theo dây cung dài nhất.
A. x = 5 + ty = 5 + 2tz = 2.
B. x = 5 + 2ty = 5 + tz = 2.
C. x = 5 + 2ty = 5 + tz = 2 − 4t.
D. x = 3 + 2ty = 4 + tz = 6.
p
Câu 19. Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) 1 − y. Kết luận
nào sau đây là sai?
A. Nếu 0 < x < π thì y > 1 − 4π2 .
B. Nếu 0 < x < 1 thì y < −3.
C. Nếux > 2 thìy < −15.
D. Nếux = 1 thì y = −3.
3
, ((ℵ) có đỉnh thuộc (S ) và đáy
2
là đường trịn nằm hồn tồn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn
nhất.
√
√
√
2π
4 3π
.
C. √ .
A. 2 3π.
B.
D. 4 3π.
3
3
Câu 20. Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R =
Câu 21.
Cho√ hai số thực a, bthỏa
mãn a√> b > 0. Kết luận nào sau đây là sai?
√
√
√5
√
2
2
− 3
D. ea > eb .
A. a > b .
B. a
< b− 3 .
C. 5 a < b.
Câu 22. Cho 0 < a , 1; 0 < x , 2. Đẳng thức nào sau đây là sai?
1
A. loga2 x = loga x .
B. loga (x − 2)2 = 2loga (x − 2).
2
C. aloga x = x.
D. loga x2 = 2loga x.
Câu 23. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
A. −6.
B. 1.
C. 0.
D. .
6
√
Câu 24. Cho hình phẳng (D) giới hạn bởi các đường y = x, y = x, x = 2 quay quanh trục hoành. Tìm
thể tích V của khối trịn xoay tạo thành.
10π
π
A. V =
.
B. V = .
C. V = π.
D. V = 1.
3
3
Câu 25. Số nghiệm của phương trình 9 x + 5.3 x − 6 = 0 là
A. 4.
B. 2.
C. 1.
D. 0.
Trang 2/4 Mã đề 001
Câu 26. Tập nghiệm của bất phương trình log4 (3 x − 1).log 1
3x − 1 3
≤ là:
16
4
4
B. S = (0; 1] ∪ [2; +∞).
D. S = [1; 2].
2x − 3
đạt giá trị lớn nhất trên đoạn [1; 3] bằng
Câu 27. Với giá trị nào của tham số m thì hàm số y =
x + m2
1
:
4
√
A. m = ±1.
B. m = ±2.
C. m = ±3.
D. m = ± 3.
R4
R4
R1
Câu 28. Cho f (x)dx = 10 và f (x)dx = 8. Tính f (x)dx
A. S = (1; 2) .
C. S = (−∞; 1] ∪ [2; +∞) .
−1
A. 18.
1
B. 2.
−1
C. −2.
D. 0.
Câu 29. Lăng trụ ABC.A′ B′C ′ có đáy là tam giác đều cạnh a. Hình chiếu vng góc của A′ lên (ABC)
là trung điểm của BC. Góc giữa cạnh bên và mặt phẳng đáy là 600 . Khoảng cách từ C ′ đến mp (ABB′ A′ )
là
√
√
√
√
3a 10
a 3
3a 13
3a 13
.
B.
.
C.
.
D.
.
A.
26
20
2
13
Câu 30. Cho tam giác ABC vuông tại A, AB = a, BC = 2a. Tính thể tích khối nón nhận được khi quay
tam giác ABC quanh trục AB.
√
√
πa3 3
3
3
.
D. πa3 3.
A. πa .
B. 3πa .
C.
3
Câu 31. Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1). Mặt cầu đường kính AB có phương
trình
√
A. (x + 1)2 + (y − 1)2 + (z − 2)2 = 6.
B. (x + 1)2 + (y − 1)2 + (z − 2)2 = 6.
C. (x + 1)2 + (y − 1)2 + (z − 2)2 = 24.
D. (x − 1)2 + (y + 1)2 + (z + 2)2 = 6.
Câu 32. Cho hình chóp đều S .ABCD có cạnh đáy bằng a Gọi M, N lần lượt là trung điểm của SA và BC
o
Biết góc giữa MN và mặt phẳng
√ (ABCD) bằng 60 . Tính
√ sin của góc giữa MN và√mặt phẳng (S BD)
5
3
10
2
B.
.
C.
.
D.
.
A. .
5
5
4
5
Câu 33. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
A. −6.
B. 1.
C. 0.
D. .
6
Câu 34. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 3a; cạnh S A vng góc với mặt
phẳng (ABCD), S A = 2a. Tính thể tích khối chóp S .ABCD.
A. 3a3 .
B. 6a3 .
C. 12a3 .
D. 4a3 .
√
Câu 35. Tính đạo hàm của hàm số y = log4 x2 − 1
x
x
1
x
. C. y′ =
A. y′ = 2
.
B. y′ = √
. D. y′ = 2
.
2
(x − 1) ln 4
2(x − 1) ln 4
(x − 1)log4 e
x2 − 1 ln 4
Câu 36. Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A. y = −x4 + 2x2 .
B. y = x3 − 3x2
C. y = −x4 + 2x2 + 8. D. y = −2x4 + 4x2 .
.
Câu 37. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh
√ a. Hai mặt phẳng (S AB), (S AC) cùng
2
vng góc
với
mặt
phẳng
(ABC),
diện
tích
tam
giác
S
BC
là
a
3. Tính thể tích khối
√
√
√
√ chóp S .ABC.
3
3
3
3
a 15
a 15
a 5
a 15
A.
.
B.
.
C.
.
D.
.
4
8
3
16
Câu 38. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
→
− (2; 3; −5).
qua điểm
A(1; −2; 4) và có một
véc tơ chỉ phương là u
x = 1 + 2t
x = 1 + 2t
x = 1 − 2t
x = −1 + 2t
y = −2 − 3t .
y
=
−2
+
3t
y
=
−2
+
3t
y
=
2
+
3t
A.
.
B.
.
C.
.
D.
z = 4 − 5t
z = 4 + 5t
z = −4 − 5t
z = 4 − 5t
Trang 3/4 Mã đề 001
√
Câu 39. Cho bất phương trình 3 2(x−1)+1 − 3 x ≤ x2 − 4x + 3. Tìm mệnh đề đúng.
A. Bất phương trình đúng với mọi x ∈ [ 1; 3].
B. Bất phương trình vơ nghiệm.
C. Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
D. Bất phương trình đúng với mọi x ∈ (4; +∞).
r
3x + 1
Câu 40. Tìm tập xác định D của hàm số y = log2
x−1
A. D = (−∞; −1] ∪ (1; +∞).
B. D = (−1; 4) ———————————————– .
C. D = (−∞; 0).
D. D = (1; +∞).
Câu 41. Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0. Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2 +MB2 +2MC 2
nhỏ nhất. Tính tổng a + b + c.
A. 1.
B. 4.
C. 2.
D. 3.
Câu 42. Tính đạo hàm của hàm số y = 5 x+cos3x
A. y′ = 5 x+cos3x ln 5 .
B. y′ = (1 + 3 sin 3x)5 x+cos3x ln 5 .
C. y′ = (1 − sin 3x)5 x+cos3x ln 5 .
D. y′ = (1 − 3 sin 3x)5 x+cos3x ln 5.
R
ax + b 2x
Câu 43. Biết a, b ∈ Z sao cho (x + 1)e2x dx = (
)e + C. Khi đó giá trị a + b là:
4
A. 4.
B. 3.
C. 2.
D. 1.
Câu 44. Tính đạo hàm của hàm số y = 5 x+cos3x
A. y′ = (1 − sin 3x)5 x+cos3x ln 5.
C. y′ = (1 + 3 sin 3x)5 x+cos3x ln 5.
B. y′ = 5 x+cos3x ln 5.
D. y′ = (1 − 3 sin 3x)5 x+cos3x ln 5.
Câu 45. Cho m = log2 3; n = log5 2. Tính log2 2250 theo m, n.
2mn + n + 3
3mn + n + 4
.
B. log2 2250 =
.
A. log2 2250 =
n
n
2mn + 2n + 3
2mn + n + 2
C. log2 2250 =
.
D. log2 2250 =
.
m
n
Câu 46. Tìm tất cả các giá trị của tham số m để hàm số y = mx3 + mx2 − x + 2 nghịch biến trên R.
A. −4 ≤ m ≤ −1.
B. −3 ≤ m ≤ 0.
C. m < 0.
D. m > −2.
Câu 47. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
→
− (2; 3; −5).
qua điểm
A(1; −2; 4) và có một
véc tơ chỉ phương là u
x = 1 − 2t
x = −1 + 2t
x = 1 + 2t
x = 1 + 2t
y = −2 + 3t .
y = 2 + 3t .
y = −2 − 3t .
y = −2 + 3t .
A.
B.
C.
D.
z = 4 + 5t
z = −4 − 5t
z = 4 − 5t
z = 4 − 5t
Câu 48. Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0. Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2 +MB2 +2MC 2
nhỏ nhất. Tính tổng a + b + c.
A. 2.
B. 1.
C. 4.
D. 3.
Câu 49. Chọn mệnh đề đúng trong các mệnh đề sau:
A. Nếu a > 0 thì a x = ay ⇔ x = y.
B. Nếu a < 1 thì a x > ay ⇔ x < y.
C. Nếu a > 1 thì a x > ay ⇔ x > y.
D. Nếu a > 0 thì a x > ay ⇔ x < y.
Câu 50. Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N). Diện tích
tồn phầnS tp của hình nón (N) bằng
A. S tp = πRl + 2πR2 .
B. S tp = πRh + πR2 .
C. S tp = πRl + πR2 .
D. S tp = 2πRl + 2πR2 .
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 4/4 Mã đề 001