Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt 9 (303)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.01 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có một.
C. Có vơ số.
D. Có hai.
Câu 2. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD. Cho
hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 16π.
C. V = 4π.
D. 8π.
Câu 3. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1728
23
1079
A.
.
B.
.


C.
.
D.
.
4913
4913
68
4913
d = 120◦ .
Câu 4. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
D. 2a.
A. 3a.
B. 4a.
C.
2


Câu 5. Phần thực √
và phần ảo của số phức
z
=
2

1

3i lần lượt l




A. Phần thực là √2 − 1, phần ảo là −√ 3.
B. Phần thực là 1√− 2, phần ảo là −√ 3.
C. Phần thực là 2, phần ảo là 1 − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
Câu 6. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
2a 3
5a3 3
4a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
2

Câu 7. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 7 mặt.

D. 9 mặt.

Câu 8. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Bốn mặt.
C. Năm mặt.

D. Ba mặt.

Câu 9. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

C. lim f (x) = f (a).
x→a

D. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

Câu 10. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam

giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt

2
2
2
a 7
a 5
11a
a2 2
A.
.
B.
.
C.
.
D.
.
8
16
32
4
! x3 −3mx2 +m
1
nghịch biến trên
Câu 11. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π

khoảng (−∞; +∞)
A. m , 0.
B. m ∈ (0; +∞).
C. m = 0.
D. m ∈ R.
Câu 12. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 + ln x.

C. y0 = x + ln x.

D. y0 = 1 − ln x.
Trang 1/10 Mã đề 1


log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. 3.
C. 4.

Câu 13. [1-c] Giá trị biểu thức
A. −8.

D. 1.

Câu 14. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.

B. 2n3 lần.
C. n3 lần.
D. 2n2 lần.
Câu 15.! Dãy số nào sau đây có giới
!n hạn là 0?
n
4
1
.
B.
.
A.
3
e

!n
5
C.
.
3

!n
5
D. − .
3

x2
Câu 16. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1

1
A. M = , m = 0.
B. M = e, m = .
C. M = e, m = 0.
D. M = e, m = 1.
e
e
Câu 17.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
dx = log |u(x)| + C.
A.
u(x)
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 18. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 5
a3 3
A.
.
B.
.
C.

.
D.
.
12
4
6
12
Câu 19. Phát biểu nào sau đây là sai?
1
A. lim qn = 0 (|q| > 1).
B. lim k = 0.
n
1
D. lim un = c (un = c là hằng số).
C. lim = 0.
n
Câu 20. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
1
2
1
A.
.
B.
.
C. .
D. .
10
10

5
5
Câu 21. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 15 tháng.
C. 17 tháng.
D. 18 tháng.
Câu 22. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 9 cạnh.

C. 11 cạnh.

D. 10 cạnh.

Câu 23. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là

√ phẳng vng góc với 3(ABCD).

a3 3
a 2
a3 3
A.
.
B.

.
C.
.
D. a3 3.
2
4
2
2−n
Câu 24. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 2.
C. 1.
D. 0.
Trang 2/10 Mã đề 1


Câu 25. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ±3.
B. m = ± 3.
C. m = ±1.
D. m = ± 2.
Câu 26. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m < 0.
C. m > 0.

D. m = 0.


Câu 27. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 28. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + .
C. T = e + 1.
D. T = e + 3.
A. T = 4 + .
e
e
Câu 29. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
x+1
Câu 30. Tính lim
bằng
x→+∞ 4x + 3
1
1
B. .
A. .
3

4

C. 1.

D. 3.

Câu 31. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (2; 1; 6).
C. ~u = (1; 0; 2).
D. ~u = (3; 4; −4).
Câu 32. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (−1; 1).
C. (−∞; −1).

D. (1; +∞).

Câu 33. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.

B. 2.
C. Vô nghiệm.
D. 3.
Câu 34.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 3.
B. 2.
C. 5.
D. 1.
Câu 35. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. − < m < 0.
C. m ≥ 0.
D. m > − .
4
4
Câu 36. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. R.
x+1
Câu 37. Tính lim
bằng
x→−∞ 6x − 2
1
1
A. 1.

B. .
C. .
3
2

D. (0; 2).

D.

1
.
6

Câu 38. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.423.000.
D. 102.016.000.
Trang 3/10 Mã đề 1


Câu 39. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 40. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng

A. 7.
B. 2.
C. 3.
D. 1.
2
x − 3x + 3
Câu 41. Hàm số y =
đạt cực đại tại
x−2
A. x = 3.
B. x = 2.
C. x = 0.
D. x = 1.
Câu 42.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
.
B.
.
A.
12
4


a3 2
C.
.

2


a3 2
D.
.
6

Câu 43. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là −4.
Câu 44. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

A. lim [ f (x) + g(x)] = a + b.

x→+∞

B. lim [ f (x)g(x)] = ab.
x→+∞
f (x) a
D. lim
= .
x→+∞ g(x)
b

x→+∞


C. lim [ f (x) − g(x)] = a − b.
x→+∞

Câu 45. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 1587 m.
C. 387 m.
D. 25 m.


Câu 46.
√ Tìm giá trị lớn nhất của hàm số y = x + 3 + 6√− x

A. 3 2.
B. 3.
C. 2 3.
D. 2 + 3.
[ = 60◦ , S A ⊥ (ABCD).
Câu 47. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối

√chóp S .ABCD là
3
3


a 2
a 3
a3 2
3
B.
.
C.
.
D.
.
A. a 3.
12
6
4
Câu 48. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
A. a 2.
B.
.
C. 2a 2.
D.
.
2
4

Z 1
6
2
3
Câu 49. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. −1.

B. 6.

C. 2.

D. 4.

Câu 50. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 6.
B. −6.
C. −5.

D. 5.

Câu 51. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1

A. − ; +∞ .
B. −∞; .
C. −∞; − .
2
2
2

!
1
D.
; +∞ .
2

2

Trang 4/10 Mã đề 1


Câu 52. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình tam giác.
C. Hình chóp.

D. Hình lập phương.

Câu 53. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 6 mặt.
D. 9 mặt.

4x + 1
Câu 54. [1] Tính lim
bằng?
x→−∞ x + 1
A. −1.
B. −4.
C. 4.
D. 2.
2x + 1
Câu 55. Tính giới hạn lim
x→+∞ x + 1
1
C. −1.
D. 2.
A. 1.
B. .
2
Câu 56. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3
a3 3
3
A. a .
B.
.
C.
.

D.
.
6
3
2
Câu 57. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log √2 x.
B. y = log 14 x.

D. y = log π4 x.
C. y = loga x trong đó a = 3 − 2.
d = 30◦ , biết S BC là tam giác đều
Câu 58. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
16

13
26
9
3

Câu 59. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e2 .
C. e.

D. e3 .

Câu 60. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 61. Tính lim
x→2
A. 2.

x+2
bằng?
x
B. 3.
!4x

3
2
Câu 62. Tập các số x thỏa mãn


#
" 3 ! 2
2
2
A. −∞; .
B.
; +∞ .
5
5

C. 1.

D. 0.

"
!
2
C. − ; +∞ .
3

#
2
D. −∞; .
3

!2−x


Câu 63. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
24
8
48
cos n + sin n
Câu 64. Tính lim
n2 + 1
A. +∞.
B. 0.
C. −∞.
D. 1.
Câu 65. Phát biểu nào sau đây là sai?

A. lim qn = 1 với |q| > 1.
C. lim un = c (Với un = c là hằng số).

1
= 0 với k > 1.
nk
1
D. lim √ = 0.
n
B. lim

Trang 5/10 Mã đề 1


Câu 66. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 2.

C. 144.

D. 4.

Câu 67. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 68. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 8.
C. 12.

Câu 69.

phức z = ( 2 + 3i)2
√ Xác định phần ảo của số √
A. 6 2.
B. −6 2.
C. 7.

D. 30.

D. −7.
!
3n + 2
2
Câu 70. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 5.
C. 4.
D. 3.
Câu 71. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 68.
B. 34.
C. 5.

D.
.
17
Câu 72. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 73. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 8 m.
C. 12 m.
D. 16 m.
Câu 74. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 2400 m.
C. 1134 m.
D. 6510 m.

Câu 75. √
Thể tích của khối lập phương có cạnh bằng a 2
3


2a 2
A.
C. V = a3 2.
D. V = 2a3 .

.
B. 2a3 2.
3
3a
Câu 76. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

2a
a 2
a
a
A. .
B.
.
C.
.
D. .
4
3
3
3
Câu 77. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2

a 2
A.
.
B.
.
C. a 2.
D. a 3.
3
2
Câu 78. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A. 3.
B. 1.
C. 2.
D.
.
3
Câu 79. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).

B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số đồng biến trên khoảng (0; 2).
Trang 6/10 Mã đề 1


Câu 80. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m ≥ 3.
D. m > 3.
2
x − 12x + 35
Câu 81. Tính lim
x→5
25 − 5x
2
2
D. − .
A. −∞.
B. +∞.
C. .
5
5
x+3
Câu 82. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?

A. 1.
B. 2.
C. Vô số.
D. 3.
Câu 83. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ±1.
B. m = ± 2.
C. m = ±3.
D. m = ± 3.
!
1
1
1
+
+ ··· +
Câu 84. Tính lim
1.2 2.3
n(n + 1)
3
A. .
B. 0.
C. 2.
D. 1.
2
m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
Câu 85. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e

số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 135.
C. S = 32.
D. S = 22.
x−1 y z+1
Câu 86. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. 2x − y + 2z − 1 = 0.
C. −x + 6y + 4z + 5 = 0.
D. 2x + y − z = 0.
x3 − 1
Câu 87. Tính lim
x→1 x − 1
A. +∞.
B. 0.

C. 3.

D. −∞.

Câu 88. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.


C. Khối 12 mặt đều.

D. Khối tứ diện đều.

Câu 89. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 20.

C. 12.

D. 30.

Câu 90. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 3.

C. 4.

D. 2.

n−1
Câu 91. Tính lim 2
n +2
A. 0.

B. 1.

C. 2.

D. 3.

Câu 92. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.

D. 1 nghiệm.
Trang 7/10 Mã đề 1


Câu 93. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
Câu 94. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m ≤ .
C. m > .
D. m < .
A. m ≥ .

4
4
4
4
Câu 95. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (1; −3).
C. (2; 2).
Câu 96. [2-c] Cho hàm số f (x) =
A.

1
.
2

D. (0; −2).

x

9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
+3

9x

B. −1.

C. 1.

D. 2.


!
!
!
1
2
2016
4x
. Tính tổng T = f
+f
+ ··· + f
Câu 97. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 1008.
C. T = 2016.
D. T = 2017.
2017
12 + 22 + · · · + n2
n3
2
B. .
3

Câu 98. [3-1133d] Tính lim

A. +∞.

C. 0.

D.

1
.
3

2
Câu 99. Tính
√4 mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √
A. |z| = 5.
B. |z| = 5.
C. |z| = 2 5.


D. |z| = 5.
tan x + m
Câu 100. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. [0; +∞).
C. (−∞; −1) ∪ (1; +∞). D. (1; +∞).
Câu 101. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.

B. {5}.
C. {3}.
D. {2}.

Câu 102. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
A. √
.
B. 2
.
C. √
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 103. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 104. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.

B. 8.

C. 30.

Câu 105. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Ba cạnh.
C. Năm cạnh.

D. 20.
D. Hai cạnh.
Trang 8/10 Mã đề 1


Câu 106. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Hai hình chóp tam giác.
D. Hai hình chóp tứ giác.
x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2

số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−3; +∞).
C. (−∞; −3].
D. [−3; +∞).
Câu 107. [4-1212d] Cho hai hàm số y =

Câu 108. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
B. −4.
C. −7.
D. −2.
A.
27


Câu 109. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là



πa3 3
πa3 3
πa3 3
πa3 6
.
B. V =

.
C. V =
.
D. V =
.
A. V =
6
2
3
6
Câu 110. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
100.1, 03
triệu.
B. m =
triệu.
A. m =
3
(1, 12)3 − 1
(1, 01)3
100.(1, 01)3
C. m =
triệu.
D.
m
=

triệu.
(1, 01)3 − 1
3
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 111. Tìm m để hàm số y =
x+m
A. 45.
B. 67.
C. 34.
D. 26.
Câu 112. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 10 năm.
C. 8 năm.
D. 7 năm.
Câu 113. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P.
C. d nằm trên P hoặc d ⊥ P.
D. d ⊥ P.
Câu 114. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = 3S h.
B. V = S h.
C. V = S h.
D. V = S h.

3
2
x−3 x−2 x−1
x
Câu 115. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. [2; +∞).
C. (2; +∞).
D. (−∞; 2).
Câu 116. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 0.
C. 1.

D. 3.
Trang 9/10 Mã đề 1


π
Câu 117. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3


trị của biểu √
thức T = a + b 3.

B. T = 2.
C. T = 4.
D. T = 2 3.
A. T = 3 3 + 1.
Câu 118. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
D.
.
c+1
c+2
c+3
c+2
ln x p 2
1
Câu 119. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x

3
8
8
1
1
B. .
C. .
D. .
A. .
9
3
9
3
x
Câu 120. [1] Đạo hàm của hàm số y = 2 là
1
1
A. y0 = 2 x . ln 2.
B. y0 = x
.
C. y0 = 2 x . ln x.
D. y0 =
.
2 . ln x
ln 2
Câu 121. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 122. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .

B. 48cm3 .
C. 84cm3 .
D. 91cm3 .
Câu 123. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
18
9
15
6
2
−1
Câu 124. [2-c] Giá trị nhỏ nhất của hàm số y = x ln x trên đoạn [e ; e] là
1
1
1
A. −e.
B. − .
C. − .
D. − 2 .
2e
e

e
2
Câu 125. Giá trị của lim(2x − 3x + 1) là
x→1
A. 2.
B. 1.
C. +∞.
D. 0.
Câu 126. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 120 cm2 .
D. 160 cm2 .
Câu 127. √
Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
B. |z| = 10.
C. |z| = 17.
D. |z| = 10.
A. |z| = 17.
Câu 128. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 2.
B. 1.

C. +∞.

D. 3.

Câu 129. Khối đa diện đều loại {4; 3} có số cạnh

A. 20.
B. 12.

C. 10.

D. 30.

1
Câu 130. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 < m ≤ 1.
C. 0 ≤ m ≤ 1.
D. 2 ≤ m ≤ 3.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

4.

3. A


C

5. A

6.

D

7.

8.

D

9.

C

11.

C

10. A
12.

B

D

13. A


14.

C

15. A

16.

C

17. A

18. A

19. A

20. A

21. A

22.

D

23. A

24. A

25.


C

26. A

27.

C

28.

D

29.

B

30.

B

31.

32.

B

33.

34.


B

35.

D

37.

D

36.

D

38.

B

39. A

40.

B

41.

42. A
D
B


50.

C

D

66.

49.

D
B
D

57. A

B

59. A

60.
64.

D

55.

C


D

62.

47.

53.

56.

C

51. A

B

54.
58.

D

45. A

46. A

52.

B

43.


44.
48.

C

61. A
63. A

C

65. A

B

67.

C

68. A

69. A
1

B


C

70.

72.

B
D

74.
76.

B

71.

D

73.

D

75.

B

77.

B

78.

C


79.

80.

C

81.

D
C

82.

D

83.

84.

D

85.

C

87.

C

86. A

88.

B

89.

90.

B

91. A

92.
94.

93.

C

97.

C

98.

D

100.

D


101.
103. A

104. A

105.
C

108.

D

110.

B
D
B

99. A

102. A
106.

D

95.

B


96.

B

C

112. A

B
B

107.

C

109.

C

111.

C

113.

C

114.

B


115.

116.

B

117.

C

119.

C

118.

D

120. A

121. A

122. A

124.
D

125.


126.

127.

B

128. A

129.

B

130. A

2

B

B
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×