Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt 9 (7)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.85 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lăng trụ.
C. Hình tam giác.

D. Hình lập phương.

Câu 2. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 3. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Câu 4. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. −2.
C. 4.
D. −4.


1
Câu 5. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 3).
C. (1; +∞).
D. (−∞; 1) và (3; +∞).
Câu 6. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 0.
C. 2.

D. 1.

Câu 7. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 2.

C. 5.

D. 4.

Câu 8. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 8.

C. 30.

D. 20.


Câu 9. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 2.
C. 7.
D. 3.
Câu 10. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 18 tháng.
B. 17 tháng.
C. 15 tháng.
D. 16 tháng.
Câu 11. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 5 mặt.
C. 6 mặt.

D. 3 mặt.

Câu 12.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z

B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Trang 1/11 Mã đề 1


Câu 13. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
C. |z| = 10.
D. |z| = 10.
A. |z| = 17.
B. |z| = 17.
Câu 14. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3 15
a3
a3 5
A.
.

B.
.
C.
.
D.
.
25
5
3
25
Câu 15. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Một mặt.
C. Hai mặt.
D. Ba mặt.
Câu 16. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. Cả ba câu trên đều sai.
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
[ = 60◦ , S O
Câu 17. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng


a 57
a 57

2a 57
A. a 57.
B.
.
C.
.
D.
.
17
19
19
Câu 18. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 3.
C. 1.
D. Vô nghiệm.
Câu 19. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
1637
1079
23
A.
.
B.
.
C.
.
D.
.

4913
4913
4913
68


Câu 20. Tìm giá trị lớn nhất của hàm
số
y
=
x
+
3
+
6√− x


A. 3.
B. 2 + 3.
C. 3 2.
D. 2 3.
Câu 21. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 32.

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x

e

C. S = 135.

D. S = 24.

Câu 22. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 22.
C. y(−2) = −18.
D. y(−2) = 6.
Câu 23. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = 2 x . ln 2.
B. y0 =
.
C. y0 = 2 x . ln x.
D. y0 = x
.
ln 2
2 . ln x
Câu 24. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 3).
C. A0 (−3; −3; 3).
D. A0 (−3; 3; 1).
Câu 25. Giá trị của lim (3x2 − 2x + 1)

x→1
A. 3.
B. 1.
Câu 26. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
n
C. lim un = c (un = c là hằng số).

C. +∞.

D. 2.

B. lim qn = 0 (|q| > 1).
1
D. lim = 0.
n
Trang 2/11 Mã đề 1


2n − 3
Câu 27. Tính lim 2
bằng
2n + 3n + 1
A. 1.
B. 0.

C. +∞.
D. −∞.
p

ln x
1
Câu 28. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
1
8
A. .
B. .
C. .
D. .
9
9
3
3
Câu 29. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
D.

.
c+1
c+2
c+3
c+2
2

Câu 30. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 1 − log2 3.
C. 3 − log2 3.

D. 2 − log2 3.

Câu 31. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim− f (x) = f (a) và lim− f (x) = f (b).

x→a


x→b

x→a

x→b

D. lim− f (x) = f (a) và lim+ f (x) = f (b).

Câu 32. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.

B. 4.

C. 3.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 2.

Câu 33. [2] Cho hàm số f (x) = 2 .5 . Giá trị của f (0) bằng
1
A. f 0 (0) = 10.
B. f 0 (0) =
.
C. f 0 (0) = 1.
D. f 0 (0) = ln 10.

ln 10
Câu 34. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC


3
a 3
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
12
6
3a
Câu 35. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng


a
a
a 2
2a
A. .
B. .
C.
.
D.
.
3
4
3
3
Câu 36. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(4; −8).
C. A(−4; 8).
D. A(4; 8).
1
Câu 37. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 0 ≤ m ≤ 1.
x

Câu 38. Khối lập phương thuộc loại

A. {4; 3}.
B. {5; 3}.
2n + 1
Câu 39. Tìm giới hạn lim
n+1
A. 2.
B. 3.

x

0

C. {3; 3}.

D. {3; 4}.

C. 0.

D. 1.

Câu 40. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1

d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (2; 2; −1).
C. ~u = (1; 0; 2).
D. ~u = (2; 1; 6).
Trang 3/11 Mã đề 1


!
!
!
4x
1
2
2016
Câu 41. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T = 1008.
C. T = 2017.
D. T =
.
2017

2−n
bằng
Câu 42. Giá trị của giới hạn lim
n+1
A. −1.
B. 2.
C. 1.
D. 0.
Câu 43. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. − < m < 0.
C. m ≥ 0.
D. m > − .
4
4
Câu 44. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 32π.
C. 16π.
D. 8π.
Câu 45. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 5.
C. 0, 2.
D. 0, 4.

Câu 46. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 9 mặt.
C. 7 mặt.

D. 6 mặt.

Câu 47. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 1.
C. 6.
D. 2.
2
1−n
bằng?
Câu 48. [1] Tính lim 2
2n + 1
1
1
1
B. .
C. 0.
D. − .
A. .
3
2
2
Câu 49. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞

A. lim [ f (x) + g(x)] = a + b.
B. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
f (x) a
C. lim [ f (x)g(x)] = ab.
D. lim
= .
x→+∞
x→+∞ g(x)
b
q
2
Câu 50. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].
C. m ∈ [0; 2].
D. m ∈ [−1; 0].
Câu 51. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 5}.

D. {3; 4}.

Câu 52. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:

A. Tăng gấp 3 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 27 lần.
Câu 53. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
B. .
C. .
D. 4.
A. .
4
8
2
!x
1
1−x
Câu 54. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. − log2 3.
B. 1 − log2 3.
C. − log3 2.
D. log2 3.
Câu 55. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 2400 m.
C. 1134 m.

D. 6510 m.
Trang 4/11 Mã đề 1


d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 56. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là




a3 2
a3 3
a3 3
2
.
C.
.
D.
.
A. 2a 2.
B.
12
24
24
1
Câu 57. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.

B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
x+1
Câu 58. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. 3.
C. 1.
D. .
4
3
Câu 59. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. −2 + 2 ln 2.
C. 4 − 2 ln 2.
Câu 60. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) xác định trên K.

D. 1.

B. f (x) liên tục trên K.
D. f (x) có giá trị nhỏ nhất trên K.

Câu 61. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 1.

Câu 62. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (−∞; 2).

C. 3.

D. 4.

C. (0; 2).

D. (0; +∞).

Câu 63. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất

√ của hàm số. Khi đó tổng M + m

A. 8 3.
B. 16.
C. 8 2.
D. 7 3.
Câu 64. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.

(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 1.

C. 0.

D. 3.

Câu 65. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 4.
C. ln 14.
D. ln 10.
Câu 66. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (1; −3).
C. (−1; −7).
Câu 67. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 + n + 1
A. un =
.
B.
u
=
.
n
5n − 3n2
(n + 1)2


C. un =

1 − 2n
.
5n + n2

D. (2; 2).
D. un =

n2 − 3n
.
n2
Trang 5/11 Mã đề 1


x2 − 12x + 35
x→5
25 − 5x
2
2
A. +∞.
B. .
C. − .
D. −∞.
5
5
Câu 69. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 12.

C. 8.
D. 20.
2n + 1
Câu 70. Tính giới hạn lim
3n + 2
3
1
2
B. .
C. 0.
D. .
A. .
3
2
2
Câu 71. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
9
1
2
A.
.
B.
.
C. .
D. .
10
10
5

5
Câu 72. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Bốn cạnh.
C. Ba cạnh.
D. Hai cạnh.
Câu 68. Tính lim

1

Câu 73. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = (−∞; 1).
C. D = R \ {1}.

D. D = (1; +∞).

Câu 74. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (−∞; −1).
C. (1; +∞).

D. (−1; 1).

Câu 75. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 76. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

1
1
B. V = S h.
C. V = 3S h.
D. V = S h.
A. V = S h.
2
3
log(mx)
Câu 77. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0 ∨ m = 4.
C. m < 0.
D. m ≤ 0.
Câu 78. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 24.
C. 20.
D. 15, 36.
Câu 79. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 7, 2.
C. 72.

D. 0, 8.
! x3 −3mx2 +m

1
Câu 80. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ (0; +∞).
C. m ∈ R.
D. m = 0.
Câu 81. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện
√tích là
2
2
2
2
11a
a 5
a 2
a 7
A.
.
B.
.
C.
.
D.

.
32
16
4
8
x2
Câu 82. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = , m = 0.
C. M = e, m = 1.
D. M = e, m = .
e
e
Trang 6/11 Mã đề 1


9x
Câu 83. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. .
B. 1.
C. 2.
D. −1.
2
Câu 84. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là

A. {2}.
B. {3}.
C. {5; 2}.
D. {5}.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 85. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
1
A. lim un = .
B. lim un = 1.
2
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 0.
1
Câu 86. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. 1.
C. 2.
D. −1.
Câu 87. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3 3
a3
3
A. a .

B.
.
C.
.
D.
.
2
6
3
Câu 88. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (I) sai.

C. Câu (II) sai.

D. Khơng có câu nào
sai.

Câu 89. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 90. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
.
B. √ .

A.
n
n

n+1
.
n
 π π
Câu 91. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 1.
C. 7.
D. 3.
!4x
!2−x
2
3
Câu 92. Tập các số x thỏa mãn


3
2
#
"
!
#
"
!
2

2
2
2
A. −∞; .
B.
; +∞ .
C. −∞; .
D. − ; +∞ .
5
5
3
3
C.

1
.
n

D.

Câu 93. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 3.
C. 1.
D. 2.

Câu 94. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √



a3 6
a 6
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
6
18
36
6
Câu 95. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
S
H

(ABCD),
S
A
=
a


√ 5. Thể tích khối chóp3 S .ABCD là
3
3
4a 3
2a 3
2a
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Trang 7/11 Mã đề 1


Câu 96. Cho hàm số y = x3 − 2x2 + x + 1.
! Mệnh đề nào dưới đây đúng?
!
1
1
B. Hàm số nghịch biến trên khoảng ; 1 .
A. Hàm số đồng biến trên khoảng ; 1 .
3

3
!
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng −∞; .
3
Câu 97. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
log7 16
Câu 98. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 2.
B. −2.
C. −4.
D. 4.
Câu 99. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.

C. Khối tứ diện đều.

D. Khối 12 mặt đều.

Câu 100. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 8.


C. 10.

D. 6.

Câu 101. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = ey + 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.

Câu 102. [3-12217d] Cho hàm số y = ln
A. xy0 = ey − 1.

Câu 103. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 8.

C. 6.

D. 10.


Câu 104. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
A. 2a 2.
B.
.
C.
.
D. a 2.
4
2
tan x + m
Câu 105. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. [0; +∞).
B. (−∞; −1) ∪ (1; +∞). C. (1; +∞).
D. (−∞; 0] ∪ (1; +∞).
Câu 106. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).

D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 107. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 9 mặt.
D. 4 mặt.
Câu 108. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD

√ là
3
3
3
3
8a 3
8a 3
a 3
4a 3
A.
.
B.
.
C.
.
D.
.
3
9
9

9
Trang 8/11 Mã đề 1


x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. 2x + y − z = 0.
C. −x + 6y + 4z + 5 = 0.
D. 2x − y + 2z − 1 = 0.
Câu 109. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 110. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 111. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = (0; +∞).

C. D = R.

D. D = R \ {0}.


Câu 112. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 220 triệu.
C. 212 triệu.
D. 210 triệu.
Câu 113. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 114. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = R.
C. D = (−2; 1).
2

Câu 115. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
C. lim un = c (Với un = c là hằng số).

D. D = R \ {1; 2}.

B. lim qn = 1 với |q| > 1.

D. lim

1
= 0 với k > 1.
nk

Câu 116. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.
B. 7.
C. 5.
D. .
A.
2
2
Z 1
Câu 117. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
2

0

B. 0.

C. 1.

D.


1
.
4

d = 30◦ , biết S BC là tam giác đều
Câu 118. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
26
13
9
16
Câu 119. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).

B. (2; 4; 3).
C. (2; 4; 4).
D. (2; 4; 6).
Câu 120.
√ Thể tích của tứ diện đều
√cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
4
12


a3 2
C.
.
2


a3 2
D.
.
6
Trang 9/11 Mã đề 1



a
1
Câu 121. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 4.
B. 2.
C. 7.
D. 1.
Câu 122. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. 3n3 lần.
C. n lần.
D. n3 lần.
n−1
Câu 123. Tính lim 2
n +2
A. 1.
B. 2.
C. 0.
D. 3.
un
Câu 124. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 0.
B. +∞.
C. −∞.
D. 1.
x+3

Câu 125. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. Vô số.
C. 3.
D. 1.
Câu 126. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 1.
C. 2.
D. Vô nghiệm.
Câu 127. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 9 năm.
C. 7 năm.
D. 10 năm.

Câu 128. Thể tích của khối lập phương có cạnh bằng a 2



2a3 2
3
3
3
A. V = a 2.

B. V = 2a .
C. 2a 2.
D.
.
3
Câu 129. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 3, 5 triệu đồng.
D. 20, 128 triệu đồng.
Câu 130. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
B. − 2 .
A. − .
C. − .
2e
e
e

D. −e.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C

1.

2. A

3. A

4.

B
B

5.

D

6.

7.

D

8.

D

10.


D

9.

B

11. A

12. A

13.

14. A

C

15. A
17.

C

16.

C

18.

C


19.

B

20.

C

21.

B

22.

C

23. A
25.
27.

D
B

29.
31.

24.

B


26.

B

28.

B

30.

D
B

32. A

33.

D

34.

35.

D

36.

37.
B


C

42. A
D

45. A
47.

B

48.

D

49.

50.

D

51.

52.

D

53. A

C
D

C

55.

54. A
56.

D

57. A

C

58. A
60.

D

40.

43.
46.

C

38. A

C

39. A

41.

D

59. A
61.

B

C

62. A

63.

64. A

65.

C

66. A

67.

C

68.

B


69. A
1

B


70. A

71.

72.
76.

D

C

75.

B

77.

78.

D

79. A


80.

D

81.

82. A

83.

84.

D

73.

C

74.

B

D

B
D
B

85. A
87.


86. A

B

88.

D

89.

90.

D

91.

92.

D

93.

D
D

94.

B


95.

96.

B

97.

98.

C

100.
102. A
C

D

106.

B

C

99. A
D

104.

C


101.

C

103.

C

105.

C

107. A

108.

B

109. A

110.

B

111.

C

113.


C

C

112.
114.

B

115.

116.

D

B

117. A

118.

B

119.

120.

B


121.

C

123.

C

125.

C

122.

D

124. A
126.

C

127.

128.

C

129.

130. A


2

D

B
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×