Tài liệu Pdf miễn phí LATEX
ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001
Câu 1. Tính I =
R1 √3
7x + 1dx
0
A. I =
20
.
7
B. I =
21
.
8
C. I =
60
.
28
D. I =
45
.
28
Câu 2. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s). Tính
quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?
A. S = 24 (m).
B. S = 12 (m).
C. S = 28 (m).
D. S = 20 (m).
Câu 3. Một mặt cầu có diện tích bằng 4πR2 thì thể tích của khối cầu đó là
4
3
A. πR3 .
B. 4πR3 .
C. πR3 .
D. πR3 .
3
4
−u (2; −2; 1), kết luận nào sau đây là đúng?
Câu 4. Trong
hệ tọa độ Oxyz cho →
√ không gian với→
→
−
−
−u | = 9.
−u | = 3
A. | u | = 3.
B. | u | = 1.
C. |→
D. |→
.
√
x
Câu 5. Đồ thị hàm số y = ( 3 − 1) có dạng nào trong các hình H1, H2, H3, H4 sau đây?
A. (H1).
B. (H3).
C. (H2) .
D. (H4).
x
π
π
π
Câu 6. Biết F(x) là một nguyên hàm của hàm số f (x) =
và F( ) = √ . Tìm F( )
2
cos x
3
4
3
π
π ln 2
π
π ln 2
π
π ln 2
π
π ln 2
A. F( ) = +
.
B. F( ) = +
.
C. F( ) = −
.
D. F( ) = −
.
4
4
2
4
3
2
4
3
2
4
4
2
Câu 7. Phương trình tiếp tuyến với đồ thị hàm số y = log5 x tại điểm có hồnh độ x = 5 là:
1
x
x
−1+
.
B. y =
+ 1.
A. y =
5 ln 5
ln 5
5 ln 5
x
1
x
1
C. y =
+1−
.
D. y =
−
.
5 ln 5
ln 5
5 ln 5 ln 5
Câu 8. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Giao điểm của (P)
và trục tung có tọa độ là
A. (0; 5; 0).
B. (0; 0; 5).
C. (0; −5; 0).
D. (0; 1; 0).
Câu 9. Cho a, b là hai số thực dương, khác 1. Đặt loga b = m, tính theo m giá trị của P = loga2 b −
log √b a3 .
m2 − 3
m2 − 12
m2 − 12
4m2 − 3
A.
.
B.
.
C.
.
D.
.
2m
m
2m
2m
Câu 10. Giá trị nhỏ nhất của hàm số y = 2x + cos xtrên đoạn [0; 1] bằng?
A. π.
B. 1.
C. 0.
D. −1.
√
Câu 11. Cho hàm số y = x− 2017 . Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm
số?
A. Không có tiệm cận.
B. Có một tiệm cận ngang và một tiệm cận đứng. .
C. Có một tiệm cận ngang và khơng có tiệm cận đứng.
D. Khơng có tiệm cận ngang và có một tiệm cận đứng.
Câu 12. Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − 4 và f (0) = 1, f (1) = 3. Tính f (−1).
A. f (−1) = −5.
B. f (−1) = 3.
C. f (−1) = −1.
D. f (−1) = −3.
Trang 1/4 Mã đề 001
√
Câu 13. Tìm tất cả các khoảng đồng biến của hàm số y = x − 2 x + 2017.
1
1
A. ( ; +∞).
B. (0; ).
C. (1; +∞) .
D. (0; 1).
4
4
2x + 2017
Câu 14. Cho hàm số y =
(1). Mệnh đề nào dưới đây là đúng?
x
+ 1
A. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x = −1..
B. Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và khơng có tiệm cận
đứng.
C. Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y = 2 và khơng có tiệm cận đứng.
D. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng
x = −1, x = 1..
√ x
Câu 15. Tìm nghiệm của phương trình 2 x = ( 3) .
A. x = 0.
B. x = 1.
C. x = −1.
D. x = 2.
Câu 16. Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2). Tìm tọa độ
điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450 .
A. C(1; 5; 3).
B. C(5; 9; 5).
C. C(−3; 1; 1).
D. C(3; 7; 4).
Câu 17. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3). Biết C là
một điểm trên mặt phẳng (P):x + z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM,
AN để tứ giác ABCD là hình thoi. Tọa độ điểm C là:
21
A. C(6; −17; 21).
B. C(8; ; 19).
C. C(20; 15; 7).
D. C(6; 21; 21).
2
Câu 18. Hình nón có bán kính đáy
√ R, đường sinh l thì diện
√ tích xung quanh của nó bằng
2
2
A. πRl.
B. 2π l − R .
C. π l2 − R2 .
D. 2πRl.
Câu 19.
thức nào sau đây là đúng?
√ Bất đẳng
√
e
π
A. ( 3 − 1) < ( 3 − 1) .
C. 3−e > 2−e .
π
B. 3√
< 2π .
√
π
e
D. ( 3 + 1) > ( 3 + 1) .
√
Câu 20. Cho hình phẳng (D) giới hạn bởi các đường y = x, y = x, x = 2 quay quanh trục hoành. Tìm
thể tích V của khối trịn xoay tạo thành.
π
10π
A. V = π.
B. V = 1.
C. V = .
D. V =
.
3
3
Rm
dx
Câu 21. Cho số thực dươngm. Tính I =
theo m?
2
0 x + 3x + 2
m+2
m+2
m+1
2m + 2
A. I = ln(
).
B. I = ln(
).
C. I = ln(
).
D. I = ln(
).
m+1
2m + 2
m+2
m+2
Câu 22. Cho a > 1; 0 < x < y. Bất đẳng thức nào sau đây là đúng?
A. log x > log y.
B. log 1 x > log 1 y.
C. loga x > loga y.
a
D. ln x > ln y.
a
Câu 23. Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =
x3 + 6x2 + mx − 2 đi qua điểm (11;1)?
A. m = 3.
B. m = 13.
C. m = −2.
D. m = −15.
ax + b
Câu 24. Cho hàm số y =
có đồ thị như hình vẽ bên. Kết luận nào sau đây là sai?
cx + d
A. ab < 0 .
B. ac < 0.
C. ad > 0 .
D. bc > 0 .
Câu 25. Một mặt cầu có diện tích bằng 4πR2 thì thể tích của khối cầu đó là
4
3
A. πR3 .
B. πR3 .
C. πR3 .
D. 4πR3 .
4
3
Trang 2/4 Mã đề 001
Câu 26. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = 0 và
mặt phẳng (P) có phương trình x + y + z − 4 = 0. Mặt phẳng (P) cắt mặt cầu (S) theo một đường trịn có
chu vi √
là:
A. 4 3π.
B. 8π.
C. 4π.
D. 2π.
Câu 27. Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2). Đường phân
giác trong góc A của tam giác ABC cắt mặt phẳng (P) : x + y + z − 6 = 0 tại điểm nào trong các điểm
sau đây:
A. (−2; 2; 6).
B. (4; −6; 8).
C. (1; −2; 7).
D. (−2; 3; 5).
1
1
1
Câu 28. Rút gọn biểu thức M =
+
+ ... +
ta được:
loga x loga2 x
logak x
k(k + 1)
4k(k + 1)
k(k + 1)
k(k + 1)
A. M =
.
B. M =
.
C. M =
.
D. M =
.
2loga x
loga x
loga x
3loga x
Câu 29. Cho a > 1, a , 0 Tìm mệnh đề đúng trong các mệnh đề sau:
A. loga xn = log 1 x , (x > 0, n , 0).
B. loga 1 = a và loga a = 0.
an
C. loga (xy) = loga x.loga y.
D. loga x có nghĩa với ∀x ∈ R.
Re lnn x
dx, (n > 1).
x
1
1
B. I =
.
n−1
Câu 30. Tính tích phân I =
1
D. I = .
n
√
Câu 31. Cho hình chóp tứ giác S .ABCD có đáy là hình vng cạnh bằng a 2, tam giác S AB vuông cân
tại S và mặt phẳng (S AB) vng√góc với mặt phẳng đáy. √
Khoảng cách từ A đến mặt
√ phẳng (S CD) là
√
a 2
a 10
a 6
A. a 2.
.
C.
.
D.
.
B.
3
2
5
Câu 32. Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1;
Độ dài đường cao AH của tứ diện ABCD là:
A. 7 .
B. 5 .
C. 6.
D. 9 .
A. I = n + 1.
C. I =
1
.
n+1
Câu 33. Tìm tập hợp tất cả các giá trị của tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm
cực đại có hồnh độ nhỏ hơn 1.
A. S = (−∞; −4) ∪ (−1; +∞) .
B. S = (−1; +∞) .
C. S = (−4; −1).
D. S = [−1; +∞) .
−u = (2; 1; 3),→
−v = (−1; 4; 3). Tìm tọa độ của véc
Câu 34. Trong không gian với hệ trục tọa độ Oxyz cho →
−u + 3→
−v .
tơ 2→
→
−
−v = (3; 14; 16).
−u + 3→
−v = (1; 13; 16).
A. 2 u + 3→
B. 2→
−u + 3→
−v = (1; 14; 15).
−u + 3→
−v = (2; 14; 14).
C. 2→
D. 2→
Câu 35. Cho tứ diện DABC, tam giác ABC vuông tại B, DA vng góc với mặt phẳng (ABC). Biết
AB = 3a,
hình chóp DABC có bán √
kính bằng
√ BC = 4a, DA = 5a. Bán√kính mặt cầu ngoại tiếp √
5a 3
5a 2
5a 3
5a 2
.
B.
.
C.
.
D.
.
A.
3
2
2
3
Câu 36. Hình phẳng giới hạn bởi đồ thị hàm y = x2 +1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
1
1
1
1
A. .
B. .
C. .
D. .
12
4
3
6
√
Câu 37. Cho bất phương trình 3 2(x−1)+1 − 3 x ≤ x2 − 4x + 3. Tìm mệnh đề đúng.
A. Bất phương trình đúng với mọi x ∈ (4; +∞).
B. Bất phương trình vơ nghiệm.
C. Bất phương trình đúng với mọi x ∈ [ 1; 3].
D. Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
Trang 3/4 Mã đề 001
Câu 38. Hàm số y = x3 − 3x2 + 1 có giá trị cực đại là:
A. 1.
B. 2.
C. 4.
D. −3.
0
d
Câu 39. Cho hình chóp S .ABC có đáy ABC
√ là tam giác vuông tại A; BC = 2a; ABC = 60 . Gọi Mlà
trung điểm
√ cạnh BC, S A = S C = S M = a 5. Tính khoảng
√ cách từ S đến mặt phẳng (ABC).
A. a 2.
B. a.
C. a 3.
D. 2a.
Câu 40. Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vng. Diện tích tồn phần của (T ) là
A. 12π.
B. 10π.
C. 6π.
D. 8π.
2
x + mx + 1
Câu 41. Tìm tất cả các giá trị của tham số m để hàm số y =
đạt cực tiểu tại điểm x = 0.
x+1
A. m = 0.
B. m = −1.
C. Khơng có m.
D. m = 1.
Câu 42. Hàm số nào trong các hàm số sau đồng biến trên R.
A. y = x4 + 3x2 .
B. y = x3 + 3x2 + 6x − 1.
4x + 1
.
C. y = −x3 − x2 − 5x.
D. y =
x+2
Câu 43. Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vng. Diện tích tồn phần của (T ) là
A. 8π.
B. 6π.
C. 12π.
D. 10π.
Câu 44. Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N). Diện tích
tồn phầnS tp của hình nón (N) bằng
A. S tp = πRl + 2πR2 .
B. S tp = 2πRl + 2πR2 . C. S tp = πRl + πR2 .
D. S tp = πRh + πR2 .
Câu 45. Tìm tất cả các giá trị của tham số m để hàm số y = mx3 + mx2 − x + 2 nghịch biến trên R.
A. m < 0.
B. −4 ≤ m ≤ −1.
C. m > −2.
D. −3 ≤ m ≤ 0.
Câu 46. Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
AA′ =√2a. Gọi α là số đo góc giữa hai đường thẳng AC √
và DB′ . Tính giá trị cos α.√
5
1
3
3
A.
.
B. .
C.
.
D.
.
5
2
4
2
0
d
Câu 47. Cho hình chóp S .ABC có đáy ABC
√ là tam giác vuông tại A; BC = 2a; ABC = 60 . Gọi Mlà
trung điểm cạnh BC, S A = S C √
= S M = a 5. Tính khoảng cách từ S đến mặt phẳng
√ (ABC).
A. 2a.
B. a 2.
C. a.
D. a 3.
Câu 48. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x + y − 2z + 1 = 0.
A. (x − 1)2 + (y − 2)2 + (z − 4)2 = 1.
B. (x − 1)2 + (y + 2)2 + (z − 4)2 = 1.
2
2
2
C. (x − 1) + (y − 2) + (z − 4) = 3.
D. (x − 1)2 + (y − 2)2 + (z − 4)2 = 2.
Câu 49. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
→
− (2; 3; −5).
qua điểm
A(1; −2; 4) và có một
véc tơ chỉ phương là u
x = −1 + 2t
x = 1 − 2t
x = 1 + 2t
x = 1 + 2t
y
=
−2
+
3t
y = 2 + 3t .
y
=
−2
+
3t
y
=
−2
−
3t
.
D.
A.
.
B.
.
C.
z = 4 + 5t
z = 4 − 5t
z = 4 − 5t
z = −4 − 5t
Câu 50. Chọn mệnh đề đúng trong các mệnh đề sau:
R
R
(2x + 1)3
2
A. (2x + 1) dx =
+ C.
B. 5 x dx =5 x + C.
3
R
R
e2x
C. sin xdx = cos x + C.
D. e2x dx =
+C .
2
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 4/4 Mã đề 001