Tải bản đầy đủ (.pdf) (4 trang)

Đề ôn khảo sát chất lượng thptqg môn toán (663)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (122.84 KB, 4 trang )

Tài liệu Pdf miễn phí LATEX

ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001

Câu 1. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3). Biết C là một
điểm trên mặt phẳng (P):x + z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN
để tứ giác ABCD là hình thoi. Tọa độ điểm C là:
21
A. C(6; 21; 21).
B. C(20; 15; 7).
C. C(6; −17; 21).
D. C(8; ; 19).
2
Câu 2. Đồ thị hàm số nào sau đây có vơ số đường tiệm cận đứng?
3x + 1
.
B. y = sin x.
A. y =
x−1
C. y = tan x.
D. y = x3 − 2x2 + 3x + 2.
Câu 3. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s). Tính
quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?
A. S = 12 (m).
B. S = 20 (m).
C. S = 28 (m).
D. S = 24 (m).


Câu 4. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Tọa độ của một véc
tơ pháp tuyến của (P) là
A. (2; −1; −2).
B. (2; −1; 2).
C. (−2; 1; 2).
D. (−2; −1; 2).

x
Câu 5. Đồ thị hàm số y = ( 3 − 1) có dạng nào trong các hình H1, H2, H3, H4 sau đây?
A. (H3).
B. (H2) .
C. (H4).
D. (H1).
−u (2; −2; 1), kết luận nào sau đây là đúng?
Câu 6. Trong không gian với hệ tọa độ Oxyz cho →




−u | = 9.
−u | = √3.
A. | u | = 1.
B. | u | = 3
C. |→
D. |→
.
Câu 7. Cho 0 < a , 1; 0 < x , 2. Đẳng thức nào sau đây là sai?
1
A. loga x2 = 2loga x.
B. loga2 x = loga x.

2
C. aloga x = x.
D. loga (x − 2)2 = 2loga (x − 2).
Câu 8. Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (−2; 3; 1).
B. M ′ (−2; −3; −1).
C. M ′ (2; 3; 1).
D. M ′ (2; −3; −1).
log
Câu 9. Cho a > 0 và a , 1. Giá
√ trị của a
A. 9.
B. 3.

√ 3
a

bằng?
C. 3.

D. 6.



Câu 10. Cho hàm số y = x− 2017 . Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm
số?
A. Khơng có tiệm cận.
B. Khơng có tiệm cận ngang và có một tiệm cận đứng.
C. Có một tiệm cận ngang và một tiệm cận đứng. .

D. Có một tiệm cận ngang và khơng có tiệm cận đứng.
Câu 11. Giá trị nhỏ nhất của hàm số y = 2x + cos xtrên đoạn [0; 1] bằng?
A. π.
B. 1.
C. −1.

D. 0.

Câu 12. Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′ ; r). Một hình nón có đỉnh O và có đáy là
hình trịn (O′ ; r). Mặt xung quanh của hình nón chia khối trụ thành hai phần. Gọi V1 là thể tích của khối
V1
nón, V2 là thể tích của phần cịn lại. Tính tỉ số .
V2
V1 1
V1
V1 1
V1 1
A.
= .
B.
= 1.
C.
= .
D.
= .
V2 6
V2
V2 3
V2 2
Trang 1/5 Mã đề 001



Câu 13. Cho x, y, z là ba số thực khác 0 thỏa mãn 2 x = 5y = 10−z . Giá trị của biểu thức A = xy + yz +
zxbằng?
A. 3.
B. 2.
C. 1.
D. 0.
Câu 14. Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB. Tính thể
tích của khối tứ diện B.MCD.
V
V
V
V
B. .
C. .
D. .
A. .
2
3
5
4
2
Câu 15. Cho hình phẳng (H) giới hạn bởi các đường y = x ; y = 0; x = 2 Tính thể tích V của khối trịn
xoay tạo thành khi quay (H) quanh trục Ox.
8
32

32π
A. V = .

B. V = .
C. V =
.
D. V =
.
3
5
3
5
y+2
z
x−1
=
= . Viết phương
Câu 16. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
1
−1
2
trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d.
A. (P) : x + y + 2z = 0. B. (P) : x − y + 2z = 0. C. (P) : x − 2y − 2 = 0. D. (P) : x − y − 2z = 0.
Câu 17. Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − 5 = 0. Bán kính R
của (S) bằng

√ bao nhiêu?
B. R = 21.
C. R = 3.
D. R = 9.
A. R = 29.
Câu 18. Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y = −x2 + 2mx − 1 − 2m trên
đoạn [−1; 2] nhỏ hơn 2.

7
A. m ≥ 0.
B. m ∈ (−1; 2).
C. m ∈ (0; 2).
D. −1 < m < .
2
2
3
Câu 19. Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3 (x + x + 1) + 2x cắt đồ thị hàm
số y = 3x2 + log3 x + m là:
A. S = [ 0; +∞).
B. S = (−∞; ln3).
C. S = [ -ln3; +∞).
D. S = (−∞; 2).
R1 √3
7x + 1dx
Câu 20. Tính I =
0

60
20
A. I = .
B. I = .
28
7
Câu 21. Bất đẳng thức nào sau đây là đúng?
−e
A. 3√
> 2−e .


π
e
C. ( 3 + 1) > ( 3 + 1) .

C. I =

45
.
28

D. I =

21
.
8

π
B. 3√
< 2π .

e
π
D. ( 3 − 1) < ( 3 − 1) .

Câu 22. Cho a > 1; 0 < x < y. Bất đẳng thức nào sau đây là đúng?
A. ln x > ln y.
B. loga x > loga y.
C. log 1 x > log 1 y.

D. log x > log y.


a

a
1
Câu 23. Kết luận nào sau đây về tính đơn điệu của hàm số y = là đúng?
x
A. Hàm số nghịch biến trên (0; +∞).
B. Hàm số đồng biến trên (−∞; 0) ∪ (0; +∞).
C. Hàm số nghịch biến trên R.
D. Hàm số đồng biến trên R.
Câu 24. Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được
A. Đường hypebol.
B. Đường parabol.
C. Đường tròn.
D. Đường elip.
Câu 25. Kết quả nào đúng?
R
sin3 x
A. sin2 x cos x =
+ C.
3
R
C. sin2 x cos x = cos2 x. sin x + C.

B.

R

sin2 x cos x = −cos2 x. sin x + C.


D.

R

sin2 x cos x = −

Câu 26. Tìm tất cả các giá trị của tham số m để hàm số y = (m + 2)
biến trên R.
A. m ≥ −8.

B. m ≤ 0.

C. m ≤ −2.

sin3 x
+ C.
3

x3
− (m + 2)x2 + (m − 8)x + m5 nghịch
3
D. m < −3.
Trang 2/5 Mã đề 001


Câu 27. Tứ diện OABC có OA = OB = OC = a và đơi một vng góc. Gọi M, N, P lần lượt là trung
điểm AB, BC, CA. Thể tích tứ diện OMNP là
a3
a3

a3
a3
A. .
B. .
C. .
D. .
6
4
12
24

Câu 28. Nguyên hàm F(x) của hàm số f (x) = 2x2 + x3 − 4 thỏa mãn điều kiện F(0) = 0 là
2
x4
2
x4
A. x3 +
− 4x.
B. x3 +
− 4x + 4. C. 2x3 − 4x4 .
D. x3 − x4 + 2x.
3
4
3
4
Câu 29. Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1;
Độ dài đường cao AH của tứ diện ABCD là:
A. 7 .
B. 9 .
C. 6.

D. 5 .

x− x+2
có tất cả bao nhiêu tiệm cận?
Câu 30. Đồ thị của hàm số y =
x2 − 4
A. 0.
B. 2.
C. 1.
D. 3.
Câu 31. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
A. −6.
B.
.
C. 1.
D. 0.
6
Re lnn x
dx, (n > 1).
Câu 32. Tính tích phân I =
x
1
1
1
1
A. I =
.
B. I =
.

C. I = n + 1.
D. I = .
n−1
n+1
n
Câu 33. Trong hệ tọa độ Oxyz, cho A(1;
kính AB có phương trình
√ 2; 3), B(−3; 0; 1). Mặt2 cầu đường
2
2
2
2
A. (x + 1) + (y − 1) + (z − 2) = 6.
B. (x + 1) + (y − 1) + (z − 2)2 = 24.
2
2
2
C. (x + 1) + (y − 1) + (z − 2) = 6.
D. (x − 1)2 + (y + 1)2 + (z + 2)2 = 6.
Câu 34. Cho P = 2a 4b 8c , chọn mệnh đề đúng trong các mệnh đề sau.
A. P = 2abc .
B. P = 26abc .
C. P = 2a+2b+3c .
Câu 35. Tính đạo hàm của hàm số y = 5 x+cos3x
A. y′ = (1 + 3 sin 3x)5 x+cos3x ln 5 .
C. y′ = (1 − 3 sin 3x)5 x+cos3x ln 5.

D. P = 2a+b+c .

B. y′ = 5 x+cos3x ln 5 .

D. y′ = (1 − sin 3x)5 x+cos3x ln 5 .

Câu 36. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vng góc với mặt phẳng
(ABC), S A = 2a. Gọi α là số đo
√ góc giữa đường thẳng S√B và mp(S AC). Tính giá√trị sin α.
1
15
15
5
B.
.
C.
.
D.
.
A. .
2
10
5
3
Câu 37. Cho tứ diện DABC, tam giác ABC vng tại B, DA vng góc với mặt phẳng (ABC). Biết
AB = 3a,
hình chóp DABC có bán √
kính bằng
√ BC = 4a, DA = 5a. Bán√kính mặt cầu ngoại tiếp √
5a 2
5a 3
5a 2
5a 3
A.

.
B.
.
C.
.
D.
.
3
2
2
3
Câu 38. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x + y − 2z + 1 = 0.
A. (x − 1)2 + (y − 2)2 + (z − 4)2 = 2.
B. (x − 1)2 + (y − 2)2 + (z − 4)2 = 1.
C. (x − 1)2 + (y + 2)2 + (z − 4)2 = 1.
D. (x − 1)2 + (y − 2)2 + (z − 4)2 = 3.
Câu 39. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
−u (2; 3; −5).
qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là →








x = 1 − 2t
x = −1 + 2t

x = 1 + 2t
x = 1 + 2t












y
=
−2
+
3t
y
=
2
+
3t
y
=
−2

3t
y

= −2 + 3t .
A. 
.
B.
.
C.
.
D.











 z = 4 + 5t
 z = −4 − 5t
 z = 4 − 5t
 z = 4 − 5t
Câu 40. Tìm tất cả các giá trị của tham số m để hàm số y = mx3 + mx2 − x + 2 nghịch biến trên R.
A. m < 0.
B. m > −2.
C. −3 ≤ m ≤ 0.
D. −4 ≤ m ≤ −1.
Trang 3/5 Mã đề 001



Câu 41. Chọn mệnh đề đúng trong các mệnh đề sau:
A. Nếu a > 0 thì a x = ay ⇔ x = y.
B. Nếu a > 1 thì a x > ay ⇔ x > y.
x
y
C. Nếu a > 0 thì a > a ⇔ x < y.
D. Nếu a < 1 thì a x > ay ⇔ x < y.
Câu 42. Hàm số y = x3 − 3x2 + 1 có giá trị cực đại là:
A. −3.
B. 1.
C. 2.

D. 4.

Câu 43. Hàm số y = x4 − 4x2 + 1 đồng biến trên khoảng nào trong các khoảng sau đây.
A. (−3; 0).
B. (1; 5).
C. (3; 5).
D. (−1; 1).
Câu 44. Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N). Diện tích
tồn phầnS tp của hình nón (N) bằng
A. S tp = 2πRl + 2πR2 . B. S tp = πRl + πR2 .
C. S tp = πRl + 2πR2 .
D. S tp = πRh + πR2 .
Câu 45. Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + 1 có hai điểm
cực trị nằm về hai phía trục Ox.
1
A. m > 2 hoặc m < −1. B. m > 1.
C. m < −2.

D. m > 1 hoặc m < − .
3
0
d
Câu 46. Cho hình chóp S .ABC có đáy ABC
√ là tam giác vng tại A; BC = 2a; ABC = 60 . Gọi Mlà
trung điểm cạnh BC, S A = S C √
= S M = a 5. Tính khoảng
√ cách từ S đến mặt phẳng (ABC).
A. 2a.
B. a 3.
C. a 2.
D. a.
Câu 47. Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vng. Diện tích tồn phần của (T ) là
A. 6π.
B. 10π.
C. 12π.
D. 8π.
3x
cắt đường thẳng y = x + m tại
Câu 48. Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y =
x−2
7
hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1; ) làm trọng tâm.
3
A. m = 2.
B. Không tồn tại m.
C. m = 1.
D. m = −2.

Câu 49. Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với 0 < a , 1. Chọn mệnh đề đúng.
A. P = 2 + 2(ln a)2 .
B. P = 2 ln a.
C. P = 1.
D. P = 2loga e.
Câu 50. Tìm tất cả các giá trị của tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhất và nhỏ nhất
trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b = −36.
A. m = 0 hoặc m = −16.
B. m = 1.
C. m = 0 hoặc m = −10.
D. m = 4.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/5 Mã đề 001



×