Tài liệu Pdf miễn phí LATEX
ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001
′
Câu 1. Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1). Tìm tọa độ điểm M đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (2; −3; −1).
B. M ′ (−2; 3; 1).
C. M ′ (−2; −3; −1).
D. M ′ (2; 3; 1).
Câu 2. Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y = −x2 + 2mx − 1 − 2m trên
đoạn [−1; 2] nhỏ hơn 2.
7
A. m ∈ (−1; 2).
B. −1 < m < .
C. m ∈ (0; 2).
D. m ≥ 0.
2
√
Câu 3. Cho hình phẳng (D) giới hạn bởi các đường y = x, y = x, x = 2 quay quanh trục hồnh. Tìm
thể tích V của khối tròn xoay tạo thành?
π
10π
A. V = 1.
B. V = .
C. V = π.
D. V =
.
3
3
−u (2; −2; 1), kết luận nào sau đây là đúng?
Câu 4. Trong
không gian với hệ tọa độ Oxyz cho →
√
−u | = 1.
−u | = 3
−u | = 9.
−u | = 3.
B. |→
C. |→
D. |→
A. |→
.
1
là đúng?
x
B. Hàm số nghịch biến trên (0; +∞).
D. Hàm số nghịch biến trên R.
Câu 5. Kết luận nào sau đây về tính đơn điệu của hàm số y =
A. Hàm số đồng biến trên (−∞; 0) ∪ (0; +∞).
C. Hàm số đồng biến trên R.
Câu 6. Cho hình lập phương ABCD.A′ B′C ′ D′ . Tính góc giữa hai đường thẳng AC và BC ′ .
A. 300 .
B. 360 .
C. 450 .
D. 600 .
Câu 7. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3). Biết C là một
điểm trên mặt phẳng (P):x + z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN
để tứ giác ABCD là hình thoi. Tọa độ điểm C là:
21
A. C(6; −17; 21).
B. C(20; 15; 7).
C. C(6; 21; 21).
D. C(8; ; 19).
2
Câu 8. Một mặt cầu có diện tích bằng 4πR2 thì thể tích của khối cầu đó là
3
4
A. 4πR3 .
B. πR3 .
C. πR3 .
D. πR3 .
4
3
Câu 9. Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình vng.
Tính thể tích của khối trụ.
A. π .
B. 2π.
C. 3π.
D. 4π.
Câu 10. Tìm giá trị cực đại yCD của hàm số y = x3 − 12x + 20.
A. yCD = −2.
B. yCD = 36.
C. yCD = 52.
D. yCD = 4.
Câu 11. Đường cong trong hình bên là đồ thị của hàm số nào?
A. y = −x4 + 1 .
B. y = −x4 + 2x2 + 1 . C. y = x4 + 2x2 + 1 .
D. y = x4 + 1.
Câu 12. Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − 1 = 0 và mặt phẳng
(P) : x + y − 3z + m − 1 = 0. Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường trịn có bán kính
lớn nhất.
A. m = 5.
B. m = 7.
C. m = −7.
D. m = 9.
Câu 13. Cho hàm số y = x3 + 3x2 − 9x − 2017. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; −3).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số đồng biến trên khoảng (−3; 1).
D. Hàm số nghịch biến trên khoảng (−3; 1).
Trang 1/5 Mã đề 001
Câu 14. Cho a, b là hai số thực dương, khác 1. Đặt loga b = m, tính theo m giá trị của P = loga2 b −
log √b a3 .
m2 − 12
m2 − 12
4m2 − 3
m2 − 3
A.
.
B.
.
C.
.
D.
.
m
2m
2m
2m
3
Câu 15. Cho hàm số y =
x
− mx + 5. Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực
trị.
A. 1.
B. 2.
C. 4.
D. 3.
√
Câu
√ 16. Cho hình chóp S .ABC có S A⊥(ABC). Tam giác ABC vuông cân tại B và S A = a 6, S B =
a 7. Tính góc giữa SC và mặt phẳng (ABC).
A. 600 .
B. 1200 .
C. 300 .
D. 450 .
Câu 17. Cho hình chóp đều S .ABCcó cạnh đáy bằng a và cạnh bên bằng b. Thể tích của khối chóp
là:
q
√
√ 2
2
a b2 − 3a2
3ab
A. VS .ABC =
.
B. VS .ABC =
.
√ 12
√122
a2 3b2 − a2
3a b
C. VS .ABC =
.
D. VS .ABC =
.
12
12
1
Câu 18. Kết luận nào sau đây về tính đơn điệu của hàm số y = là đúng?
x
A. Hàm số nghịch biến trên (0; +∞).
B. Hàm số đồng biến trên (−∞; 0) ∪ (0; +∞).
C. Hàm số đồng biến trên R.
D. Hàm số nghịch biến trên R.
x
π
π
π
Câu 19. Biết F(x) là một nguyên hàm của hàm số f (x) =
và F( ) = √ . Tìm F( ).
2
cos x
3
4
3
π
π ln 2
π
π ln 2
π
π ln 2
π
π ln 2
A. F( ) = +
.
B. F( ) = −
.
C. F( ) = +
.
D. F( ) = −
.
4
3
2
4
3
2
4
4
2
4
4
2
Câu 20. Tìm tất cả các giá trị của tham số m để hàm số y = xe−x + mx đồng biến trên R?
A. m > e2 .
B. m > 2.
C. m > 2e .
D. m ≥ e−2 .
Câu 21. Đồ thị hàm số nào sau đây có vơ số đường tiệm cận đứng?
3x + 1
.
A. y = tan x.
B. y =
x−1
3
2
C. y = x − 2x + 3x + 2.
D. y = sin x .
Câu 22. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Tọa độ của một
véc tơ pháp tuyến của (P) là
A. (−2; −1; 2).
B. (2; −1; 2).
C. (2; −1; −2).
D. (−2; 1; 2).
Câu 23. Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?
A. y = x3 − 2x2 + 3x + 2.
B. y = x3 .
4
2
C. y = −x + 3x − 2.
D. y = x2 − 2x + 2.
√
′ ′ ′
Câu 24.
lăng trụ đều ABC.A
B C có đáy bằng a, AA′ = 4 3a. Thể tích khối lăng trụ đã cho là:
√ Cho
√
A. 8 3a3 .
B. 3a3 .
C. a3 .
D. 3a3 .
Câu 25. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
A. 0.
B. −6.
C. 1.
D. .
6
Câu 26. Lăng trụ ABC.A′ B′C ′ có đáy là tam giác đều cạnh a. Hình chiếu vng góc của A′ lên (ABC)
là trung điểm của BC. Góc giữa cạnh bên và mặt phẳng đáy là 600 . Khoảng cách từ C ′ đến mp (ABB′ A′ )
là
√
√
√
√
3a 13
a 3
3a 13
3a 10
A.
.
B.
.
C.
.
D.
.
26
2
13
20
Trang 2/5 Mã đề 001
1
1
1
+
+ ... +
ta được:
loga x loga2 x
logak x
k(k + 1)
4k(k + 1)
B. M =
.
C. M =
.
2loga x
loga x
Câu 27. Rút gọn biểu thức M =
A. M =
k(k + 1)
.
loga x
Câu 28. Tìm tất cả các giá trị của tham số m để đồ thị hàm số y =
hai điểm cực trị nằm về phía bên phải trục tung?
A. m > 2.
B. m < 2.
D. M =
k(k + 1)
.
3loga x
1 3
1
x − (m − 2)x2 + (m − 2)x + m2 có
3
3
C. m > 3 hoặc m < 2.
D. m > 3.
Câu 29. Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước. Người ta thả vào đó một
khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngồi là 18π
(dm3). Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa khối cầu chìm
trong nước. Tính thể tích nước cịn lại trong bình.
A. 54π(dm3 ).
B. 12π(dm3 ).
C. 6π(dm3 ).
D. 24π(dm3 ).
(2 ln x + 3)3
là :
x
(2 ln x + 3)2
(2 ln x + 3)4
(2 ln x + 3)4
2 ln x + 3
A.
+ C.
B.
+ C.
C.
+ C.
D.
+ C.
2
8
2
8
Câu 31. Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1;
Độ dài đường cao AH của tứ diện ABCD là:
A. 5 .
B. 9 .
C. 7 .
D. 6.
2x − 3
Câu 32. Với giá trị nào của tham số m thì hàm số y =
đạt giá trị lớn nhất trên đoạn [1; 3] bằng
x + m2
1
:
4
√
A. m = ± 3.
B. m = ±2.
C. m = ±1.
D. m = ±3.
Câu 30. Họ nguyên hàm của hàm số f (x) =
Câu 33. Cho hình chóp đều S .ABCD có cạnh đáy bằng a Gọi M, N lần lượt là trung điểm của SA và BC
o
Biết góc
√ giữa MN và mặt phẳng (ABCD) bằng 60 . Tính
√ sin của góc giữa MN và√mặt phẳng (S BD)
5
2
3
10
.
B. .
C.
.
D.
.
A.
5
5
4
5
Câu 34. Tính đạo hàm của hàm số y = 5 x+cos3x
A. y′ = (1 − sin 3x)5 x+cos3x ln 5 .
B. y′ = 5 x+cos3x ln 5 .
C. y′ = (1 − 3 sin 3x)5 x+cos3x ln 5.
D. y′ = (1 + 3 sin 3x)5 x+cos3x ln 5 .
√
2x − x2 + 3
Câu 35. Đồ thị hàm số y =
có số đường tiệm cận đứng là:
x2 − 1
A. 1.
B. 2.
C. 3.
D. 0.
Câu 36. Cho hàm số y = x2 − x + m có đồ thị là (C). Tìm tất cả các giá trị của tham số m để tiếp tuyến
của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2).
A. m = 1.
B. m = 2.
C. m = 4.
D. m = 3.
r
3x + 1
Câu 37. Tìm tập xác định D của hàm số y = log2
x−1
A. D = (−1; 4) ———————————————– .
B. D = (−∞; 0).
C. D = (1; +∞).
D. D = (−∞; −1] ∪ (1; +∞).
3x
Câu 38. Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y =
cắt đường thẳng y = x + m tại
x−2
7
hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1; ) làm trọng tâm.
3
A. m = 1.
B. m = −2.
C. m = 2.
D. Không tồn tại m.
Trang 3/5 Mã đề 001
Câu 39. Tìm tất cả các giá trị của tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhất và nhỏ nhất
trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b = −36.
A. m = 0 hoặc m = −16.
B. m = 0 hoặc m = −10.
C. m = 4.
D. m = 1.
Câu 40. Hàm số nào trong các hàm số sau đồng biến trên R.
A. y = x3 + 3x2 + 6x − 1.
B. y = −x3 − x2 − 5x.
4x + 1
.
C. y = x4 + 3x2 .
D. y =
x+2
Câu 41. Cho hình√chóp S .ABCD có đáy ABCD là hình vng. Cạnh S A vng góc với mặt phẳng
(ABCD); S A = 2a 3. Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 . Gọi M, N lần lượt là trung
điểm hai√cạnh AB, AD. Tính khoảng
√
√ cách giữa hai đường√thẳng MN và S C.
3a 30
a 15
3a 6
3a 6
.
B.
.
C.
.
D.
.
A.
2
10
2
8
Câu 42. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh
√ a. Hai mặt phẳng (S AB), (S AC) cùng
2
vng góc
là a 3. Tính thể tích khối
√diện tích tam giác S BC3 √
√ chóp S .ABC.
√ với mặt phẳng (ABC),
3
3
3
a 15
a 5
a 15
a 15
.
B.
.
C.
.
D.
.
A.
16
8
3
4
Câu 43. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh
√ a. Hai mặt phẳng (S AB), (S AC) cùng
2
vng góc
là a 3. Tính thể tích khối
√ với mặt phẳng (ABC),
√diện tích tam giác S BC3 √
√ chóp S .ABC.
a3 15
a3 15
a 5
a3 15
A.
.
B.
.
C.
.
D.
.
16
4
3
8
x2 + mx + 1
Câu 44. Tìm tất cả các giá trị của tham số m để hàm số y =
đạt cực tiểu tại điểm x = 0.
x+1
A. m = 1.
B. Khơng có m.
C. m = −1.
D. m = 0.
Câu 45. Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình
x2 + y2 + √
z2 − 4x − 6y + 2z − 1 = 0.√
B. R = 15.
C. R = 4.
D. R = 3.
A. R = 14.
√
Câu 46. Tính đạo hàm của hàm số y = log4 x2 − 1
x
x
x
1
A. y′ = 2
. B. y′ = 2
.
C. y′ =
. D. y′ = √
.
2
2
(x − 1)log4 e
(x − 1) ln 4
2(x − 1) ln 4
x − 1 ln 4
Câu 47. Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x trên đoạn [−1; 2] lần lượt là M, m.
Tính tổng M + m.
A. 5.
B. 3.
C. 4.
D. 6.
Câu 48. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x + y − 2z + 1 = 0.
A. (x − 1)2 + (y − 2)2 + (z − 4)2 = 2.
B. (x − 1)2 + (y − 2)2 + (z − 4)2 = 1.
C. (x − 1)2 + (y + 2)2 + (z − 4)2 = 1.
D. (x − 1)2 + (y − 2)2 + (z − 4)2 = 3.
3x
Câu 49. Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y =
cắt đường thẳng y = x + m tại
x−2
7
hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1; ) làm trọng tâm.
3
A. Không tồn tại m.
B. m = 1.
C. m = 2.
D. m = −2.
Câu 50. Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với 0 < a , 1. Chọn mệnh đề đúng.
A. P = 1.
B. P = 2 ln a.
C. P = 2loga e.
D. P = 2 + 2(ln a)2 .
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 4/5 Mã đề 001