Tài liệu Pdf miễn phí LATEX
ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001
Câu 1. Phương trình tiếp tuyến với đồ thị hàm số y = log5 x tại điểm có hồnh độ x = 5 là:
x
1
x
1
A. y =
−1+
.
B. y =
−
.
5 ln 5
ln 5
5 ln 5 ln 5
x
1
x
C. y =
+1−
.
D. y =
+ 1.
5 ln 5
ln 5
5 ln 5
Câu 2. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Giao điểm của (P)
và trục tung có tọa độ là
A. (0; 1; 0).
B. (0; −5; 0).
C. (0; 5; 0).
D. (0; 0; 5).
√
′
Câu 3. Cho lăng trụ đều ABC.A√′ B′C ′ có đáy bằng a, AA
√ =3 4 3a. Thể tích khối3lăng trụ đã cho là:
3
3
A. 3a .
B. 8 3a .
C. 3a .
D. a .
Câu 4. Đồ thị hàm số nào sau đây có vơ số đường tiệm cận đứng?
A. y = tan x.
B. y = x3 − 2x2 + 3x + 2.
3x + 1
.
D. y = sin x.
C. y =
x−1
Câu 5. Cho
nào sau√ đây là sai?
√
√5 hai số thực a, bthỏa√2mãn √a2> b > 0. Kết luận
√5
− 3
B. a > b .
A. a < b.
C. a
< b− 3 .
D. ea > eb .
Câu 6. Hàm số nào sau đây khơng có cực trị?
A. y = cos x.
C. y = x3 − 6x2 + 12x − 7.
B. y = x4 + 3x2 + 2 .
D. y = x2 .
Câu 7. Một mặt cầu có diện tích bằng 4πR2 thì thể tích của khối cầu đó là
3
4
A. πR3 .
B. πR3 .
C. πR3 .
4
3
D. 4πR3 .
Câu 8. Cho hình
đều S .ABCcó cạnh đáy bằng a và cạnh bên√bằng b. Thể tích của khối chóp là:
√ chóp
2
3ab
3a2 b
A. VS .ABC =
.
B. VS .ABC =
.
12
12
q
√
√
a2 b2 − 3a2
a2 3b2 − a2
C. VS .ABC =
.
D. VS .ABC =
.
12
12
Câu 9. Cho a, b là hai số thực dương bất kì. Mệnh đề nào dưới đây đúng?
A. ln(ab) = ln a. ln b .
B. ln(ab2 ) = ln a + (ln b)2 .
a
ln a
C. ln(ab2 ) = ln a + 2 ln b.
D. ln( ) =
.
b
ln b
Câu 10. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − 1 = 0. Viết phương trình
mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P).
1
A. (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3.
B. (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = .
3
1
2
2
2
2
2
2
C. (S ) : (x + 2) + (y + 1) + (z − 1) = .
D. (S ) : (x − 2) + (y − 1) + (z + 1) = 3.
3
Câu 11. Đường cong trong hình bên là đồ thị của hàm số nào?
A. y = −x4 + 1 .
B. y = x4 + 2x2 + 1 .
C. y = x4 + 1.
D. y = −x4 + 2x2 + 1 .
log
Câu 12.
√ Cho a > 0 và a , 1. Giá trị của a
A. 3.
B. 9.
D. 6.
√ 3
a
bằng?
C. 3.
Trang 1/5 Mã đề 001
Câu 13. Tìm giá trị cực đại yCD của hàm số y = x3 − 12x + 20.
A. yCD = 36.
B. yCD = 52.
C. yCD = 4.
D. yCD = −2.
Câu 14. Cho a, b là hai số thực dương, khác 1. Đặt loga b = m, tính theo m giá trị của P = loga2 b −
log √b a3 .
4m2 − 3
m2 − 12
m2 − 3
m2 − 12
.
B.
.
C.
.
D.
.
A.
m
2m
2m
2m
Câu 15. Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2). Tìm tọa độ
điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450 .
A. C(3; 7; 4).
B. C(1; 5; 3).
C. C(5; 9; 5).
D. C(−3; 1; 1).
Câu 16. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4). Tìm tọa độ trung
điểm I của đoạn thẳng AB.
A. I(0; 1; 2).
B. I(1; 1; 2).
C. I(0; 1; −2).
D. I(0; −1; 2).
Câu 17. Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được
A. Đường hypebol.
B. Đường tròn.
C. Đường elip.
D. Đường parabol.
Câu 18. Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1). Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E.
A. (−2; 0; 0).
B. (0; 2; 0).
C. (0; −2; 0).
D. (0; 6; 0).
π
π
π
x
và F( ) = √ . Tìm F( ).
Câu 19. Biết F(x) là một nguyên hàm của hàm số f (x) =
2
cos x
3
4
3
π
π ln 2
π
π ln 2
π
π ln 2
π
π ln 2
A. F( ) = −
.
B. F( ) = +
.
C. F( ) = −
.
D. F( ) = +
.
4
4
2
4
3
2
4
3
2
4
4
2
Câu 20. Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (−2; 3; 1).
B. M ′ (2; 3; 1).
C. M ′ (2; −3; −1).
D. M ′ (−2; −3; −1).
3
Câu 21. Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) và đáy
2
là đường trịn nằm hồn tồn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn
nhất.
√
√
√
2π
4 3π
A. √ .
B. 4 3π.
C. 2 3π.
D.
.
3
3
Câu 22. Đồ thị hàm số nào sau đây có vơ số đường tiệm cận đứng?
A. y = tan x.
B. y = sin x .
3x + 1
3
2
C. y = x − 2x + 3x + 2.
D. y =
.
x−1
Câu 23. Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?
A. y = −x4 + 3x2 − 2.
B. y = x2 − 2x + 2.
C. y = x3 .
D. y = x3 − 2x2 + 3x + 2.
Rm
dx
Câu 24. Cho số thực dươngm. Tính I =
theo m?
2
0 x + 3x + 2
m+2
m+1
m+2
2m + 2
A. I = ln(
).
B. I = ln(
).
C. I = ln(
).
D. I = ln(
).
m+1
m+2
2m + 2
m+2
3 + 2x
Câu 25. Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y =
tại
x+1
hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?
3
A. ∀m ∈ R.
B. m < .
C. 1 < m , 4.
D. −4 < m < 1.
2
Câu 26. Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân với BA = BC = a, S A = a và vng
góc với
√ (SAC) và (SBC) bằng?
√
√ mặt phẳng đáy. Tính cơsin góc giữa hai mặt phẳng
3
1
2
2
A.
.
B. .
C.
.
D.
.
2
2
2
3
Trang 2/5 Mã đề 001
Câu 27. Người ta cần cắt một tấm tơn có hình dạng là một elíp với độ dài trục lớn bằng 2a, độ dài trục
bé bằng 2b (a > b > 0) để được một tấm tơn có dạng hình chữ nhật nội tiếp elíp. Người ta gị tấm tơn
hình chữ nhật thu được thành một hình trụ khơng có đáy như hình bên. Tính thể tích lớn nhất có thể được
của khối trụ thu được.
4a2 b
2a2 b
4a2 b
2a2 b
C. √ .
D. √ .
A. √ .
B. √ .
3 3π
3 3π
3 2π
3 2π
x2 + 2x
Câu 28. Khoảng cách giữa hai điểm cực trị của đồ thị hàm số y =
là:
x−1
√
√
√
√
A. 2 15.
B. 2 5.
C. −2 3.
D. 2 3.
(2 ln x + 3)3
là :
x
(2 ln x + 3)2
(2 ln x + 3)4
B.
+ C.
C.
+ C.
2
8
Câu 29. Họ nguyên hàm của hàm số f (x) =
A.
(2 ln x + 3)4
+ C.
2
D.
2 ln x + 3
+ C.
8
Câu 30. Tứ diện OABC có OA = OB = OC = a và đơi một vng góc. Gọi M, N, P lần lượt là trung
điểm AB, BC, CA. Thể tích tứ diện OMNP là
a3
a3
a3
a3
A. .
B.
.
C. .
D. .
12
24
6
4
Câu 31. Cho log2 b = 3, log2 c = −4. Hãy tính log2 (b2 c)
A. 6.
B. 4.
C. 2.
D. 8.
√
Câu 32. Cho hình chóp S .ABC có S A⊥(ABC), S A = a 3. Tam giác ABC vuông cân tại B, AC = 2a.
Thể tích √
khối chóp S .ABC là √
√
3
3
√
a3 3
3
2a 3
a
.
B.
.
C. a3 3 .
.
A.
D.
3
6
3
Câu 33. Một thùng đựng nước có dạng hình trụ có chiều cao h và bán kính đáy√bằng R. Khi đặt thùng
R 3
nước nằm ngang như hình 1 thì khoảng cách từ trục hình trụ tới mặt nước bằng
(mặt nước thấp hơn
2
trục của hình trụ). Khi đặt thùng nước thẳng đứng như hình 2 thì chiều cao của mực nước trong thùng là
h1
h1 . Tính tỉ số
√ h
√
√
√
3
2π − 3 3
2π − 3
π− 3
.
B.
.
C.
.
D.
.
A.
6
4
12
12
Câu 34. Cho hàm số y = x2 − x + m có đồ thị là (C). Tìm tất cả các giá trị của tham số m để tiếp tuyến
của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2).
A. m = 2.
B. m = 1.
C. m = 4.
D. m = 3.
Câu 35. Hình phẳng giới hạn bởi đồ thị hàm y = x2 +1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
1
1
1
1
B.
.
C. .
D. .
A. .
6
12
4
3
Câu 36. Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh
của hình √
nón đỉnh S và đáy là hình√trịn nội tiếp tứ giác ABCD
√
√ bằng
2
2
2
πa 17
πa 17
πa 17
πa2 15
A.
.
B.
.
C.
.
D.
.
8
6
4
4
Câu 37. Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau. Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
A. 36080253 đồng.
B. 36080254 đồng.
C. 36080251 đồng.
D. 36080255 đồng.
Câu 38. Hàm số y = x3 − 3x2 + 1 có giá trị cực đại là:
A. 4.
B. 2.
C. 1.
D. −3.
Trang 3/5 Mã đề 001
Câu 39. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
→
− (2; 3; −5).
qua điểm
A(1; −2; 4) và có một
véc tơ chỉ phương là u
x = 1 + 2t
x = −1 + 2t
x = 1 − 2t
x = 1 + 2t
y = −2 + 3t .
y = 2 + 3t .
y = −2 + 3t .
y = −2 − 3t .
A.
B.
C.
D.
z = 4 − 5t
z = −4 − 5t
z = 4 + 5t
z = 4 − 5t
√
Câu 40. Cho bất phương trình 3 2(x−1)+1 − 3 x ≤ x2 − 4x + 3. Tìm mệnh đề đúng.
A. Bất phương trình vơ nghiệm.
B. Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
C. Bất phương trình đúng với mọi x ∈ [ 1; 3].
D. Bất phương trình đúng với mọi x ∈ (4; +∞).
Câu 41. Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0. Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2 +MB2 +2MC 2
nhỏ nhất. Tính tổng a + b + c.
A. 1.
B. 4.
C. 3.
D. 2.
√
2x − x2 + 3
Câu 42. Đồ thị hàm số y =
có số đường tiệm cận đứng là:
x2 − 1
A. 0.
B. 3.
C. 2.
D. 1.
Câu 43. Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau. Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
A. 36080251 đồng.
B. 36080255 đồng.
C. 36080254 đồng.
D. 36080253 đồng.
√
Câu 44. Tính đạo hàm của hàm số y = log4 x2 − 1
x
1
x
x
′
′
′
A. y′ =
.
B.
y
=
.
C.
y
=
.
D.
y
=
.
√
2(x2 − 1) ln 4
(x2 − 1) ln 4
(x2 − 1)log4 e
x2 − 1 ln 4
Câu 45. Cho hình√chóp S .ABCD có đáy ABCD là hình vng. Cạnh S A vng góc với mặt phẳng
(ABCD); S A = 2a 3. Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 . Gọi M, N lần lượt là trung
điểm hai√cạnh AB, AD. Tính khoảng
MN và S C.
√
√
√ cách giữa hai đường thẳng
3a 30
3a 6
a 15
3a 6
.
B.
.
C.
.
D.
.
A.
2
10
8
2
Câu 46. Cho P = 2a 4b 8c , chọn mệnh đề đúng trong các mệnh đề sau.
A. P = 2abc .
B. P = 2a+2b+3c .
C. P = 26abc .
D. P = 2a+b+c .
Câu 47. Chọn mệnh đề đúng trong các mệnh đề sau:
A. Nếu a > 0 thì a x > ay ⇔ x < y.
B. Nếu a > 1 thì a x > ay ⇔ x > y.
C. Nếu a > 0 thì a x = ay ⇔ x = y.
D. Nếu a < 1 thì a x > ay ⇔ x < y.
Câu 48. Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N). Diện tích
tồn phầnS tp của hình nón (N) bằng
A. S tp = 2πRl + 2πR2 . B. S tp = πRh + πR2 .
C. S tp = πRl + 2πR2 .
D. S tp = πRl + πR2 .
Câu 49. Cho m = log2 3; n = log5 2. Tính log2 2250 theo m, n.
3mn + n + 4
2mn + n + 2
A. log2 2250 =
.
B. log2 2250 =
.
n
n
2mn + 2n + 3
2mn + n + 3
C. log2 2250 =
.
D. log2 2250 =
.
m
n
x2
Câu 50. Tính tích tất cả các nghiệm của phương trình (log2 (4x))2 + log2 ( ) = 8
8
1
1
1
1
A. .
B. .
C. .
D.
.
32
6
64
128
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 4/5 Mã đề 001