Tài liệu Pdf miễn phí LATEX
ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001
Câu 1. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Giao điểm của (P)
và trục tung có tọa độ là
A. (0; −5; 0).
B. (0; 0; 5).
C. (0; 5; 0).
D. (0; 1; 0).
Câu 2. Cho lăng trụ đều ABC.A′ B′C ′ có tất cả các cạnh đều bằng a. Tính khoảng cách giữa hai đường
thẳng√AB′ và BC ′ .
√
2a
5a
a
3a
A.
C. √ .
D.
.
B. √ .
.
3
2
5
5
R1 √3
7x + 1dx
Câu 3. Tính I =
0
45
21
60
20
A. I = .
B. I = .
C. I = .
D. I = .
28
8
28
7
Câu 4. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3). Biết C là một
điểm trên mặt phẳng (P):x + z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN
để tứ giác ABCD là hình thoi. Tọa độ điểm C là:
21
A. C(6; 21; 21).
B. C(20; 15; 7).
C. C(6; −17; 21).
D. C(8; ; 19).
2
Câu 5. Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu (S )có
tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo
dây cung dài nhất?
A. x = 5 + ty = 5 + 2tz = 2.
B. x = 3 + 2ty = 4 + tz = 6.
C. x = 5 + 2ty = 5 + tz = 2 − 4t.
D. x = 5 + 2ty = 5 + tz = 2.
ax + b
có đồ thị như hình vẽ bên. Kết luận nào sau đây là sai?
Câu 6. Cho hàm số y =
cx + d
A. ab < 0 .
B. ad > 0 .
C. bc > 0 .
D. ac < 0.
Câu 7. Cho 0 < a , 1; 0 < x , 2. Đẳng thức nào sau đây là sai?
A. aloga x = x.
B. loga x2 = 2loga x.
1
C. loga (x − 2)2 = 2loga (x − 2).
D. loga2 x = loga x.
2
x
Câu 8. Giá trị nhỏ nhất của hàm số y = 2
trên tập xác định của nó là
x +1
1
1
B. min y = − .
C. min y = 0.
D. min y = −1.
A. min y = .
R
R
R
R
2
2
3
a
Câu 9. Cho hình chóp đều S .ABCD có cạnh đáy bằng a và thể tích bằng . Tìm góc giữa mặt bên và
6
mặt đáy của hình chóp đã cho.
A. 1350 .
B. 300 .
C. 450 .
D. 600 .
√
d = 1200 . Gọi
Câu 10. Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a 5 và BAC
K, I lần√lượt là trung điểm của cạnh CC1 , BB1 . Tính khoảng
√ cách từ điểm I đến mặt
√ phẳng (A1 BK).
√
a 15
a 5
a 5
A.
.
B. a 15.
C.
.
D.
.
3
6
3
Câu 11. Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét. Khi đó hình thang đã
cho có√diện tích lớn nhất bằng? √
√
3 3 2
3 3 2
(m ).
B.
(m ).
C. 3 3(m2 ).
D. 1 (m2 ).
A.
2
4
Trang 1/5 Mã đề 001
Câu 12. Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB. Tính thể
tích của khối tứ diện B.MCD.
V
V
V
V
B. .
C. .
D. .
A. .
4
3
5
2
Câu 13. Cho hình phẳng (H) giới hạn bởi các đường y = x2 ; y = 0; x = 2 Tính thể tích V của khối trịn
xoay tạo thành khi quay (H) quanh trục Ox.
32π
32
8π
8
A. V = .
B. V =
.
C. V = .
D. V =
.
3
5
5
3
Câu 14. Giá trị nhỏ nhất của hàm số y = 2x + cos xtrên đoạn [0; 1] bằng?
A. −1.
B. 1.
C. π.
D. 0.
√
Câu
√ 15. Cho hình chóp S .ABC có S A⊥(ABC). Tam giác ABC vuông cân tại B và S A = a 6, S B =
a 7. Tính góc giữa SC và mặt phẳng (ABC).
A. 600 .
B. 300 .
C. 450 .
D. 1200 .
Câu 16. Tìm tất cả các giá trị của tham số m để hàm số y = mx − sin xđồng biến trên R.
A. m ≥ 1.
B. m > 1.
C. m ≥ 0.
D. m ≥ −1.
√
x
Câu 17. Đồ thị hàm số y = ( 3 − 1) có dạng nào trong các hình H1, H2, H3, H4 sau đây?
A. (H3).
B. (H2).
C. (H4).
D. (H1).
Câu 18. Kết quả nào đúng?
R
sin3 x
+ C.
A. sin2 x cos x =
3
R
sin3 x
2
C. sin x cos x = −
+ C.
3
B.
R
sin2 x cos x = cos2 x. sin x + C.
D.
R
sin2 x cos x = −cos2 x. sin x + C.
Câu 19. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s).
Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động.
A. S = 20 (m).
B. S = 24 (m).
C. S = 28 (m).
D. S = 12 (m).
Câu 20. Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu
(S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S)
theo dây cung dài nhất.
A. x = 3 + 2ty = 4 + tz = 6.
B. x = 5 + 2ty = 5 + tz = 2 − 4t.
C. x = 5 + 2ty = 5 + tz = 2.
D. x = 5 + ty = 5 + 2tz = 2.
1
là đúng?
x
B. Hàm số nghịch biến trên (0; +∞).
D. Hàm số đồng biến trên R.
Câu 21. Kết luận nào sau đây về tính đơn điệu của hàm số y =
A. Hàm số đồng biến trên (−∞; 0) ∪ (0; +∞).
C. Hàm số nghịch biến trên R.
Câu 22. Hàm số nào sau đây khơng có cực trị?
A. y = x2 .
B. y = x4 + 3x2 + 2.
3
2
C. y = x − 6x + 12x − 7.
D. y = cos x.
x
Câu 23. Giá trị nhỏ nhất của hàm số y = 2
trên tập xác định của nó là
x +1
1
1
A. min y = − .
B. min y = −1.
C. min y = 0.
D. min y = .
R
R
R
R
2
2
Câu 24.√ Cho hai
số thực a, bthỏa mãn a > b > 0. Kết luận
nào√sau đây là sai?
√
√
√5
√5
− 3
− 3
2
A. a
B. a < b.
C. a > b 2 .
D. ea > eb .
Câu 25. Đồ thị hàm số nào sau đây có vơ số đường tiệm cận đứng?
3x + 1
A. y = sin x .
B. y =
.
x−1
C. y = tan x.
D. y = x3 − 2x2 + 3x + 2.
Trang 2/5 Mã đề 001
1
1
1
+
+ ... +
ta được:
loga x loga2 x
logak x
4k(k + 1)
k(k + 1)
B. M =
.
C. M =
.
loga x
2loga x
Câu 26. Rút gọn biểu thức M =
A. M =
k(k + 1)
.
loga x
D. M =
k(k + 1)
.
3loga x
1 3 2
x −2x +3x+1
Câu 27. Cho hàm số f (x) = e 3
. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 1) và (3; +∞).
B. Hàm số đồng biến trên khoảng (−∞; 1) và (3; +∞).
C. Hàm số nghịch biến trên khoảng(−∞; 1) và đồng biến trên khoảng(3; +∞).
D. Hàm số đồng biến trên khoảng(−∞; 1) và nghịch biến trên khoảng(3; +∞).
Câu 28. Cho log2 b = 3, log2 c = −4. Hãy tính log2 (b2 c)
A. 6.
B. 8.
C. 2.
D. 4.
√
Câu 29. Cho hình chóp S .ABC có S A⊥(ABC), S A = a 3. Tam giác ABC vuông cân tại B, AC = 2a.
Thể tích√khối chóp S .ABC là
√
√
√
a3 3
2a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 3 .
6
3
3
x3
Câu 30. Tìm tất cả các giá trị của tham số m để hàm số y = (m + 2) − (m + 2)x2 + (m − 8)x + m5 nghịch
3
biến trên R.
A. m ≥ −8.
B. m ≤ 0.
C. m < −3.
D. m ≤ −2.
Câu 31. Cường độ một trận động đất M (richter) được cho bởi công thức M = log A − log A0 , với A là
biên độ rung chấn tối đa và A0 là một biên độ chuẩn (hằng số). Đầu thế kỷ 20, một trận động đất ở San
Francisco có cường độ 8,3 độ Richter. Trong cùng năm đó, trận động đất khác Nam Mỹ có biên độ mạnh
hơn gấp 4 lần. Cường độ của trận động đất ở Nam Mỹ có kết quả gần đúng bằng:
A. 2,075.
B. 8,9.
C. 33,2.
D. 11.
x
3 −1 3
Câu 32. Tập nghiệm của bất phương trình log4 (3 x − 1).log 1
≤ là:
16
4
4
A. S = (0; 1] ∪ [2; +∞).
B. S = [1; 2].
C. S = (−∞; 1] ∪ [2; +∞) .
D. S = (1; 2) .
x−3
y−6
z−1
Câu 33. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 :
=
=
và
−2
2
1
d2 : x = ty = −tz = 2 (t ∈ R). Đường thẳng đi qua điểm A(0; 1; 1), vng góc với d1 và cắt d2 có phương
trình là:
x
y−1 z−1
x−1
y
z−1
A.
=
=
.
B.
=
=
.
−1
−3
4
−1
−3
4
x y−1 z−1
x
y−1 z−1
=
.
D.
=
=
.
C. =
1
−3
4
−1
3
4
Câu 34. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
→
− (2; 3; −5).
qua điểm
A(1; −2; 4) và có một
véc tơ chỉ phương là u
x = 1 + 2t
x = 1 + 2t
x = −1 + 2t
x = 1 − 2t
y = −2 + 3t .
y = −2 − 3t .
y = 2 + 3t .
y = −2 + 3t .
D.
A.
B.
C.
z = 4 − 5t
z = −4 − 5t
z = 4 + 5t
z = 4 − 5t
Câu 35. Chọn mệnh đề đúng trong các mệnh đề sau:
A. Nếu a > 0 thì a x = ay ⇔ x = y.
B. Nếu a < 1 thì a x > ay ⇔ x < y.
C. Nếu a > 1 thì a x > ay ⇔ x > y.
D. Nếu a > 0 thì a x > ay ⇔ x < y.
3x
Câu 36. Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y =
cắt đường thẳng y = x + m tại
x−2
7
hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1; ) làm trọng tâm.
3
A. m = 2.
B. m = 1.
C. Không tồn tại m.
D. m = −2.
Trang 3/5 Mã đề 001
Câu 37. Hàm số y = x4 − 4x2 + 1 đồng biến trên khoảng nào trong các khoảng sau đây.
A. (−3; 0).
B. (1; 5).
C. (3; 5).
D. (−1; 1).
Câu 38. Tính thể tích của khối trịn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2 ,
trục Ox và hai đường thẳng x = −1; x = 2 quay quanh trục Ox.
31π
32π
33π
A.
.
B.
.
C.
.
D. 6π.
5
5
5
Câu 39. Cho P = 2a 4b 8c , chọn mệnh đề đúng trong các mệnh đề sau.
A. P = 26abc .
B. P = 2abc .
C. P = 2a+2b+3c .
D. P = 2a+b+c .
Câu 40. Hàm số y = x3 − 3x2 + 1 có giá trị cực đại là:
A. 1.
B. 2.
C. 4.
D. −3.
Câu 41. Tìm tất cả các giá trị của tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhất và nhỏ nhất
trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b = −36.
A. m = 0 hoặc m = −10.
B. m = 0 hoặc m = −16.
C. m = 4.
D. m = 1.
Câu 42. Tính đạo hàm của hàm số y = 5 x+cos3x
A. y′ = (1 − sin 3x)5 x+cos3x ln 5 .
C. y′ = 5 x+cos3x ln 5 .
B. y′ = (1 − 3 sin 3x)5 x+cos3x ln 5.
D. y′ = (1 + 3 sin 3x)5 x+cos3x ln 5 .
Câu 43. Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau. Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
A. 36080253 đồng.
B. 36080251 đồng.
C. 36080255 đồng.
D. 36080254 đồng.
0
d
Câu 44. Cho hình chóp S .ABC có đáy ABC
√ là tam giác vng tại A; BC = 2a; ABC = 60 . Gọi Mlà
trung điểm cạnh BC, S A = S C √
= S M = a 5. Tính khoảng
√ cách từ S đến mặt phẳng (ABC).
A. a.
B. a 2.
C. a 3.
D. 2a.
Câu 45. Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + 1 có hai điểm
cực trị nằm về hai phía trục Ox.
1
A. m > 1 hoặc m < − . B. m > 2 hoặc m < −1. C. m > 1.
D. m < −2.
3
x2 + mx + 1
đạt cực tiểu tại điểm x = 0.
Câu 46. Tìm tất cả các giá trị của tham số m để hàm số y =
x+1
A. m = 1.
B. m = 0.
C. m = −1.
D. Khơng có m.
Câu 47. Cho hình√chóp S .ABCD có đáy ABCD là hình vng. Cạnh S A vng góc với mặt phẳng
(ABCD); S A = 2a 3. Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 . Gọi M, N lần lượt là trung
điểm hai√cạnh AB, AD. Tính khoảng
MN và S C.
√ cách giữa hai đường thẳng
√
√
3a 6
3a 6
3a 30
a 15
A.
.
B.
.
C.
.
D.
.
2
8
10
2
Câu 48. Cho tứ diện DABC, tam giácABC là vng tại B, DA vng góc với mặt phẳng (ABC). Biết
AB = 3a,
hình chóp DABC có bán √
kính bằng
√ BC = 4a, DA = 5a. Bán√kính mặt cầu ngoại tiếp √
5a 3
5a 2
5a 2
5a 3
A.
.
B.
.
C.
.
D.
.
2
3
2
3
Câu 49. Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6). Gọi M là điểm nằm trên
đoạn AB sao cho MA = 2MB. Tìm tọa độ điểm M
7 10 31
2 7 21
5 11 17
4 10 16
A. M( ; ; ).
B. M( ; ; ).
C. M( ; ; ).
D. M( ; ; ).
3 3 6
3 3 3
3 3 3
3 3 3
Câu 50. Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A. y = x3 − 3x2
B. y = −x4 + 2x2 + 8. C. y = −2x4 + 4x2 .
D. y = −x4 + 2x2 .
.
- - - - - - - - - - HẾT- - - - - - - - - Trang 4/5 Mã đề 001