Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn khảo sát chất lượng thptqg môn toán (961)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (124.21 KB, 5 trang )

Tài liệu Pdf miễn phí LATEX

ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001

Câu 1. Cho hàm số y =
A. ad > 0 .

ax + b
có đồ thị như hình vẽ bên. Kết luận nào sau đây là sai?
cx + d
B. bc > 0 .
C. ab < 0 .
D. ac < 0.

Câu 2. Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (2; −3; −1).
B. M ′ (−2; −3; −1).
C. M ′ (2; 3; 1).
D. M ′ (−2; 3; 1).
Câu 3. Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD là hình bình hành. Hình chiếu vng góc của A′
lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc giữa mặt
bên (ABB′ A′ ) và mặt đáy bằng 450 . Tính thể tích khối tứ diện ACB′ D′ theo a.
A. 30a3 .
B. 60a3 .
C. 20a3 .
D. 100a3 .


Câu 4. Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng
A. 4πR3 .
B. 2πR3 .
C. πR3 .
D. 6πR3 .
Câu 5. Cho hìnhqchóp đều S .ABCcó cạnh đáy bằng a và cạnh bên bằng b. Thể tích của khối chóp là:


a2 b2 − 3a2
a2 3b2 − a2
A. VS .ABC =
.
B. VS .ABC =
.
√ 2 12
√ 12
3a b
3ab2
C. VS .ABC =
.
D. VS .ABC =
.
12
12
Câu 6. Tìm tất cả các giá trị của tham số m để hàm số y = xe−x + mx đồng biến trên R.
A. m ≥ e−2 .
B. m > e2 .
C. m > 2.
D. m > 2e .
Câu 7. Số nghiệm của phương trình 9 x + 5.3 x − 6 = 0 là

A. 1.
B. 4.
C. 2.

D. 0.

Câu 8. Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =
x3 + 6x2 + mx − 2 đi qua điểm (11;1)?
A. m = −2.
B. m = 3.
C. m = 13.
D. m = −15.
Câu 9. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4). Tìm tọa độ trung
điểm I của đoạn thẳng AB.
A. I(1; 1; 2).
B. I(0; 1; −2).
C. I(0; −1; 2).
D. I(0; 1; 2).
Câu 10. Tìm giá trị cực đại yCD của hàm số y = x3 − 12x + 20.
A. yCD = 4.
B. yCD = 52.
C. yCD = 36.
R
Câu 11. Tính nguyên hàm cos 3xdx.
1
A. 3 sin 3x + C.
B. −3 sin 3x + C.
C. − sin 3x + C.
3


D. yCD = −2.

D.

1
sin 3x + C.
3

Câu 12. Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − 1 = 0 và mặt phẳng
(P) : x + y − 3z + m − 1 = 0. Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường trịn có bán kính
lớn nhất.
A. m = 9.
B. m = −7.
C. m = 7.
D. m = 5.
Câu 13. Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vng
với cạnh huyền bằng 2a. Tính thể√tích của khối nón.

π.a3
4π 2.a3
2π.a3
π 2.a3
A.
.
B.
.
C.
.
D.
.

3
3
3
3
Trang 1/5 Mã đề 001


Câu 14. Cho hình phẳng (H) giới hạn bởi các đường y = x2 ; y = 0; x = 2 Tính thể tích V của khối trịn
xoay tạo thành khi quay (H) quanh trục Ox.

32π
8
32
B. V =
.
C. V =
.
D. V = .
A. V = .
5
3
5
3
3
a
Câu 15. Cho hình chóp đều S .ABCD có cạnh đáy bằng a và thể tích bằng . Tìm góc giữa mặt bên và
6
mặt đáy của hình chóp đã cho.
A. 1350 .
B. 300 .

C. 450 .
D. 600 .
Câu 16. Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục
tung.
1
1
C. Không tồn tại m.
D. m < .
A. m < 0.
B. 0 < m < .
3
3
Câu 17. Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu
(S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S)
theo dây cung dài nhất.
A. x = 3 + 2ty = 4 + tz = 6.
B. x = 5 + 2ty = 5 + tz = 2.
C. x = 5 + 2ty = 5 + tz = 2 − 4t.
D. x = 5 + ty = 5 + 2tz = 2.
Câu R18. Công thức nào sai?
A. R e x = e x + C.
C. sin x = − cos x + C.

R
B. R cos x = sin x + C.
D. a x = a x . ln a + C.

Câu 19. Đồ thị hàm số nào sau đây có vơ số đường tiệm cận đứng?
A. y = sin x .
B. y = x3 − 2x2 + 3x + 2.

3x + 1
.
D. y = tan x.
C. y =
x−1
Câu 20. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s).
Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động.
A. S = 20 (m).
B. S = 12 (m).
C. S = 24 (m).
D. S = 28 (m).

x
Câu 21. Đồ thị hàm số y = ( 3 − 1) có dạng nào trong các hình H1, H2, H3, H4 sau đây?
A. (H2).
B. (H4).
C. (H1).
D. (H3).
Câu 22. Một mặt cầu có diện tích bằng 4πR2 thì thể tích của khối cầu đó là
3
4
C. 4πR3 .
D. πR3 .
A. πR3 .
B. πR3 .
4
3
1
R √3
Câu 23. Tính I =

7x + 1dx
0

45
21
20
60
A. I = .
B. I = .
C. I = .
D. I = .
28
8
7
28
2
Câu 24. Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y = −x + 2mx − 1 − 2m trên
đoạn [−1; 2] nhỏ hơn 2.
7
A. m ≥ 0.
B. −1 < m < .
C. m ∈ (0; 2).
D. m ∈ (−1; 2).
2
Câu 25. Cho hình chóp đều S .ABCD có đáy ABCD là hình vng cạnh 2a, đường cao của hình chóp
bằng a. Tính góc giữa hai mặt phẳng (S AC) và (S AB).
A. 300 .
B. 600 .
C. 360 .
D. 450 .


Câu 26. Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; 2; 1
Độ dài đường cao AH của tứ diện ABCD là:
A. 6.
B. 5 .
C. 9 .
D. 7 .
Câu 27. Trong hệ tọa độ Oxyz, cho A(1;
kính AB có phương trình
√ 2; 3), B(−3; 0; 1). Mặt2 cầu đường
2
2
2
2
B. (x + 1) + (y − 1) + (z − 2)2 = 24.
A. (x + 1) + (y − 1) + (z − 2) = 6.
2
2
2
C. (x − 1) + (y + 1) + (z + 2) = 6.
D. (x + 1)2 + (y − 1)2 + (z − 2)2 = 6.
Trang 2/5 Mã đề 001


Câu 28. Người ta cần cắt một tấm tơn có hình dạng là một elíp với độ dài trục lớn bằng 2a, độ dài trục
bé bằng 2b (a > b > 0) để được một tấm tơn có dạng hình chữ nhật nội tiếp elíp. Người ta gị tấm tơn
hình chữ nhật thu được thành một hình trụ khơng có đáy như hình bên. Tính thể tích lớn nhất có thể được
của khối trụ thu được.
2a2 b
4a2 b

2a2 b
4a2 b
B. √ .
C. √ .
D. √ .
A. √ .
3 3π
3 3π
3 2π
3 2π
Câu 29. Tứ diện OABC có OA = OB = OC = a và đơi một vng góc. Gọi M, N, P lần lượt là trung
điểm AB, BC, CA. Thể tích tứ diện OMNP là
a3
a3
a3
a3
B.
.
C. .
D. .
A. .
6
12
4
24
Câu 30. Cho hình chóp đều S .ABCD có cạnh đáy bằng a Gọi M, N lần lượt là trung điểm của SA và BC
o
Biết góc
√ giữa MN và mặt phẳng (ABCD) bằng 60 . Tính
√ sin của góc giữa MN và√mặt phẳng (S BD)

3
2
10
5
A.
.
B. .
C.
.
D.
.
4
5
5
5
√3
a2 b
Câu 31. Biết loga b = 2, loga c = 3 với a, b, c > 0; a , 1. Khi đó giá trị của loga (
) bằng
c
1
2
A. − .
B. 5.
C. .
D. 6.
3
3
(2 ln x + 3)3
là :

x
2 ln x + 3
(2 ln x + 3)4
(2 ln x + 3)4
(2 ln x + 3)2
A.
+ C.
B.
+ C.
C.
+ C.
D.
+ C.
8
8
2
2
Câu 33. Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước. Người ta thả vào đó một
khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngoài là 18π
(dm3). Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa khối cầu chìm
trong nước. Tính thể tích nước cịn lại trong bình.
A. 24π(dm3 ).
B. 12π(dm3 ).
C. 6π(dm3 ).
D. 54π(dm3 ).
Câu 32. Họ nguyên hàm của hàm số f (x) =

Câu 34. Cho P = 2a 4b 8c , chọn mệnh đề đúng trong các mệnh đề sau.
A. P = 26abc .
B. P = 2a+b+c .

C. P = 2abc .

D. P = 2a+2b+3c .

Câu 35. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
−u (2; 3; −5).
qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là →








x = 1 − 2t
x = 1 + 2t
x = −1 + 2t
x = 1 + 2t













y
=
−2
+
3t
y
=
−2
+
3t
y
=
2
+
3t
y
= −2 − 3t .
A. 
.
B.
.
C.
.
D.












 z = 4 + 5t
 z = 4 − 5t
 z = −4 − 5t
 z = 4 − 5t
Câu 36. Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với 0 < a , 1. Chọn mệnh đề đúng.
A. P = 2loga e.
B. P = 1.
C. P = 2 ln a.
D. P = 2 + 2(ln a)2 .
Câu 37. Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau. Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
A. 36080251 đồng.
B. 36080255 đồng.
C. 36080253 đồng.
D. 36080254 đồng.
Câu 38. Chọn mệnh đề đúng trong các mệnh đề sau:
R
R
e2x
+ C.
B. sin xdx = cos x + C .
A. e2x dx =
2
R

R
(2x + 1)3
C. (2x + 1)2 dx =
+C .
D. 5 x dx =5 x + C .
3
0
d
Câu 39. Cho hình chóp S .ABC có đáy ABC
√ là tam giác vuông tại A; BC = 2a; ABC = 60 . Gọi Mlà
trung điểm cạnh BC, S A = S C √
= S M = a 5. Tính khoảng
√ cách từ S đến mặt phẳng (ABC).
A. 2a.
B. a 2.
C. a 3.
D. a.

Trang 3/5 Mã đề 001


Câu 40. Hàm số nào trong các hàm số sau đồng biến trên R.
A. y = −x3 − x2 − 5x.
B. y = x3 + 3x2 + 6x − 1.
4x + 1
C. y = x4 + 3x2 .
D. y =
.
x+2
Câu 41. Hàm số y = x3 − 3x2 + 1 có giá trị cực đại là:

A. 1.
B. 4.
C. 2.

D. −3.

Câu 42. Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A(1; 2; 3)
−n (2; 1; −4).
và có một véc tơ pháp tuyến là →
A. −2x − y + 4z − 8 = 0.
B. 2x + y − 4z + 1 = 0.
C. 2x + y − 4z + 7 = 0.
D. 2x + y − 4z + 5 = 0.
Câu 43. Hàm số nào trong các hàm số sau đồng biến trên R.
A. y = x4 + 3x2 .
B. y = x3 + 3x2 + 6x − 1.
4x + 1
.
C. y = −x3 − x2 − 5x.
D. y =
x+2
Câu 44. Tính tích tất cả các nghiệm của phương trình (log2 (4x))2 + log2 (
A.

1
.
32

B.


1
.
128

1
C. .
6

x2
)=8
8
1
D. .
64

Câu 45. Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC là tam giác tù, AB = AC. Góc tạo bởi hai
đường thẳng AA′ và BC ′ bằng 300 ; khoảng cách giữa AA′ và BC ′ bằng a; góc giữa hai mặt phẳng
(ABB′ A′ ) và (ACC ′ A′ ) bằng 600 . Tính thể tích khối lăng trụ ABC.A′ B′C ′ .




B. 9a3 3.
C. 4a3 3.
D. 3a3 3.
A. 6a3 3.


Câu 46. Cho bất phương trình 3 2(x−1)+1 − 3 x ≤ x2 − 4x + 3. Tìm mệnh đề đúng.
A. Bất phương trình đúng với mọi x ∈ (4; +∞).

B. Bất phương trình đúng với mọi x ∈ [ 1; 3].
C. Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
D. Bất phương trình vô nghiệm.
3x
cắt đường thẳng y = x + m tại
Câu 47. Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y =
x−2
7
hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1; ) làm trọng tâm.
3
A. m = 1.
B. Không tồn tại m.
C. m = 2.
D. m = −2.
Câu 48. Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh
của hình nón đỉnh S và đáy là hình trịn nội tiếp tứ giác ABCD bằng




πa2 17
πa2 15
πa2 17
πa2 17
A.
.
B.
.
C.
.

D.
.
6
4
8
4
Câu 49. Hàm số y = x3 − 3x2 + 1 có giá trị cực đại là:
A. −3.
B. 2.
C. 4.

D. 1.

Câu 50. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh
√ a. Hai mặt phẳng (S AB), (S AC) cùng
vng góc với mặt phẳng (ABC), diện tích tam giác S BC là a2 3. Tính thể tích khối chóp S .ABC.




a3 15
a3 5
a3 15
a3 15
A.
.
B.
.
C.
.

D.
.
4
8
3
16
Trang 4/5 Mã đề 001


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 001



×