TUYỂN TẬP HÌNH HỌC GIẢI TÍCH
TRONG KHÔNG GIAN
(ĐÁP ÁN CHI TIẾT)
BIÊN SOẠN: LƯU HUY THƯỞNG
Toàn bộ tài liệu của thầy ở trang:
HÀ NỘI, 8/2013
HỌ VÀ TÊN: …………………………………………………………………
LỚP :………………………………………………………………….
TRƯỜNG :…………………………………………………………………
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN
HÌNH HỌC GIẢI TÍCH TRONG KHÔNG GIAN
Toàn bộ tài liệu luyện thi đại học môn toán của thầy Lưu Huy Thưởng:
PHẦN I VIẾT PHƯƠNG TRÌNH MẶT PHẲNG
Dạng 1: Viết phương trình mặt phẳng bằng cách xác định vectơ pháp tuyến.
!"#$"%"%%&'(
)*+,-"#".
/Xác định trực tiếp:01%#23"%"%45#.6478
69
/Xác định gián tiếp::;<='7'
BÀI TẬP
HT 1. :&%=3>!
,
Oxyz
%
( ) : 2 3 1 0
P x y z
+ − + =
*
(2; 1;1)
A
−
7
&;$?(2@"%"%$(
Giải
:.
( )/ /( )
Q P
A7&;$?(BC.
( ) : 2 3 0, ( 1)
Q x y z D D
+ − + = ≠
:.$?(2@A"&.
3
D
=
D47&;
( ) : 2 3 3 0
Q x y x
+ − + =
HT 2. :&% = 3 > !
,
Oxyz
% 78
1 1 2
:
1 2 1
x y z
d
− + −
= =
−
*
(1;0; 1)
A
−
7&;$(2@
d
Giải
:4
( )
P d
⊥
A7&;$(BC.
2 0
x y z D
− + + =
=4$(2@A"&
0
D
=
D47&;
2 0
x y z
− + =
HT 3. :&% = 3 > !
,
Oxyz
% E * =
(1;2; 1), ( 1; 0;2), (2; 1;1)
A B C
− − −
7&;$@FG(
Giải
:.
( 2; 2;3), (1; 3;2)
AB AC
= − − = −
$@FG(!.
[ ]
; (5;7; 8)
n AB AC
= =
D47&;
( ) : 5( 1) 7( 2) 8( 1) 0
ABC x y z
− + − + + =
5 7 8 11 0
x y z
⇔ + + − =
HT 4. :&%=3>!
,
Oxyz
4%*@$<HIH(4F$6HHE($(.
– 3 2 – 5 0
x y z
+ =
7&;$?(2*@4F$(
Giải
:.
( 3; 3;2)
AB
= − −
J>
,
P Q
n n
K7L$($?(
(1; 3;2)
P
n = −
:.
, ( )
( ) ( )
Q
Q P
AB n
A B Q
Q P
n n
⊥
∈
⇒
⊥
⊥
M&4$?(!.
, (0; 8; 12) 0
Q P
n n AB
= = − − ≠
D47&;
( ) : 2 3 11 0
Q y z
+ − =
.
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN<
HT 5. :&%=3>!N+O47&;$(2*
(2;1;3), (1; 2;1)
A B
−
"%"%78
1
: 2
3 2
x t
d y t
z t
= − +
=
= − −
Giải
:
(1; 3;2)
BA
=
4B:G
(1;2; 2)
u
= −
J>
n
:PQRSJ:TUSP$(⇒
n BA
n u
⊥
⊥
⇒$(!
, ( 10; 4; 1)
n BA u
= = − −
⇒7&;$(.
10 4 19 0
x y z
− + − =
HT 6. :&% = 3 > !
,
Oxyz
% 78 V
1
2 1
: ;
1 1 2
x y z
d
− +
= =
−
2
1 1 1
:
1 2 1
x y z
d
− − −
= =
−
7&;$(W<78
1 2
;
d d
Giải
J>
n
$(
1 2
,
u u
K7LX7
1 2
;
d d
1 2
(1; 1;2); ( 1;2;1)
u u= − = −
J>@%*
1 2
;
d d
M&4
(1;1;1)
A
:.
1 1
2 2
( )
( )
P d n u
P d n u
⊃ ⊥
⇒
⊃ ⊥
M&4$(
[ ]
1 2
, ( 5; 3;1)
n u u= = − −
D47&;
( ) : 5 3 7 0
P x y z
− − + + =
HT 7. :&% = 3 > !
,
Oxyz
% < 78 "% "%
1
d
2
d
7 &;.
1
1 1 2
( );
2 3 1
x y z
d
− + −
= =
4
2
4 1 3
( ) :
6 9 3
x y z
d
− − −
= =
YD7&;$(W
1
d
2
d
Giải
:.
1 2
(1; 1;2) ; (4;1;3)
A d B d
− ∈ ∈
4
(3;2;1)
AB
=
J>
1
u
X7
1
d
J>
n
$(
:4$(W78"%"%
1 2
,
d d
A$(. [ ]
1
; (1;1; 5)
n u AB
= = −
M&47&;
( ) : 5 10 0
P x y z
+ − + =
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾNE
HT 8. :&%=%Z[ Z\%\%Z\
,
Oxyz
%] $H 6H(^78
1
1
( ) :
1 2 3
x y z
d
+
= =
− −
2
1 4
( ) :
1 2 5
x y z
d
− −
= =
G7[ &_ ]
1 2
, ,
M d d
^ ` &Z %Z\ a\ b c 7 &d^ a\
b%[
Giải
:.
1
d
2
1
(0; 1;0)
M −
1
(1; 2; 3)
u
= − −
4
2
d
2
2
(0;1; 4)
M
2
(1;2; 5)
u =
M&.
1 2
; ( 4; 8;4) 0
u u
= − − ≠
4
1 2
(0;2;4)
M M =
⇒
1 2 1 2
; . 0
u u M M
=
⇒
1 2
,
d d
e
J> $( W
1 2
,
d d
⇒ $( :PQRSJ :TUSP
(1;2; 1)
n
= −
2
A 7 &;
2 2 0
x y z
+ − + =
f*&g*
(1; –1;1) ( )
M P
∈
Dạng 2: Viết phương trình mặt phẳng liên quan đến mặt cầu
HT 9. :&% = 3 > !
,
Oxyz
%
( ) : 1 0
P x y z
+ + − =
K
2 2 2
( ) : ( 1) ( 2) ( 1) 25
S x y z
− + + + − =
7&;
( )
Q
"%"%$(+-$M(
Giải
:.
( ) / /( )
P Q
M&47&;
( ) : 0 ( 1)
Q x y z D D
+ + + = ≠ −
K$M(h
(1; 2;1)
I
−
4i=j.
5
R
=
$?(+-K$M(=X=.
( ;( ))
5 3
5
5 3
3
I Q
D
D
d R
D
=
= ⇔ = ⇔
= −
D47&;
1 2
( ) : 5 3 0;( ) : 5 3 0
Q x y z Q x y z
+ + + = + + − =
HT 10. :&%=3%C!
,
Oxyz
%K
2 2 2
( ) : 2 6 4 2 0
S x y z x y z
+ + − + − − =
7&;
$("%"%k
(1;6;2)
v
=
4
( ) : 4 11 0
x y z
α
+ + − =
+-
$M(
Giải
:.$M(h
(1; 3;2)
I
−
i=j
4
R
=
:PQRSJ:TUSP
( )
α
(1;4;1)
n
=
⇒:PQRSJ:TUSP$(.
, (2; 1;2)
P
n n v
= = −
⇒7&;$(BC.
2 2 0
x y z m
− + + =
;$(+-$M(A
( ,( )) 4
d I P
=
21
3
m
m
= −
⇔
=
D.
( ) : 2 2 3 0
P x y z
− + + =
%
( ) : 2 2 21 0
P x y z
− + − =
HT 11. :&% = 3 %C !
,
Oxyz
4 % 78
3 3
:
2 2 1
x y z
d
− −
= =
K
x z
2 2 2
( ) : 2 2 4 2 0
S x y z y
+ + − − − + =
YD7&;$("%"%
d
&l
Ox
4e8
+-K$M(
Giải
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾNI
:.$M(h
(1;1;2)
I
4i=j
2
R
=
B:G
(2;2;1)
u
=
( ) / / ,
P d Ox
⇒$(:PQRSJ:TUSP
, (0;1; 2)
n u i
= = −
⇒PQRSJ:TUSP$(BC.
z
2 0
y D
− + =
$(+-$M(⇔
( ,( ))
d I P R
=
⇔
2 2
1 4
2
1 2
D− +
=
+
⇔
3 2 5
D
− =
⇔
3 2 5
3 2 5
D
D
= +
= −
⇒$(.
z
2 3 2 5 0
y
− + + =
% $(.
z
2 3 2 5 0
y
− + − =
HT 12. :&% = 3 > !
,
Oxyz
% K
2 2 2
( ) : 2 4 4 0
S x y z x y
+ + + − − =
( ) : 3 0
P x z
+ − =
7&;$?(2*
(3;1; 1)
M
−
$(+-
K$M(
Chú ý: Đối với dạng này, chúng ta không tìm được vec-tơ pháp tuyến của mặt phẳng dưới dạng trực tiếp. Chính vì vậy, ta
phải dùng phương trình tổng quát của mặt phẳng để viết.
Giải
:.$M(h
( 1;2;0)
I
−
i=j
3
R
=
4$(:PQRSJ:TUSP
(1;0;1)
P
n =
PQRSJ:TUSP$?(2 BC.
2 2 2
( 3) ( 1) ( 1) 0, 0
A x B y C z A B C
− + − + + = + + ≠
$?(+-$M(⇔
2 2 2
( ,( )) 4 3
d I Q R A B C A B C
= ⇔ − + + = + +
$m(
( ) ( ) . 0 0
Q P
Q P n n A C C A
⊥ ⇔ = ⇔ + = ⇔ = −
$mm(
:n$m(4$mm(⇒
2 2 2 2
5 3 2 8 7 10 0
B A A B B A AB
− = + ⇔ − + =
⇔
A
2 7 4
A B B
= ∨ = −
•
2
A B
=
G>Fo4@o<4Go6<⇒
( ) : 2 2 9 0
Q x y z
+ − − =
•
A
7 4
B
= −
G>Fo6p4@oI4Go6I⇒
( ) : 4 7 4 9 0
Q x y z
− − − =
HT 13. :&%=3&l
,
Oxyz
%K
2 2 2
( ) : – 2 4 2 – 3 0
S x y z x y z
+ + + + =
7&;
$(W&l
Ox
VK$M(%!78&qi=j
3
r
=
Giải
:.$M(h
(1; 2; 1)
I
− −
4i=j
3
R
=
$(W
Ox
⇒
2 2
( ) : 0 ( 0)
P By Cz B C+ = + >
=478&qB3i=ji_E%A$(2hr
M&.
2 0 2
B C C B
− − = ⇔ = − →
G>
1 2
B C
= → = −
D47&;
( ) : 2 0
P y z
− =
HT 14. :&%=3&l
,
Oxyz
%K
2 2 2
( ) : 2 2 2 – 1 0
S x y z x y z
+ + + − + =
78
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾNs
2 2
:
1 1 2
x y z
d
− +
= =
7&;$(WBVK$M(%!78&qi=j
1
r
=
Giải
:.$M(h
( 1;1; 1)
I
− −
4i=j
2
R
=
PQRSJ:TUSP
2 2 2
( ) : 0 ( 0)
P ax by cz d a b c+ + + = + + ≠
G>
(2; 0; 2), (3;1;0)
M N d
− ∈
:.
2 2
( )
( )
( ,( ))
M P
N P
d I P R r
∈
∈
= −
⇔
,2 ( ), 3 (1)
17 7 ,2 ( ), 3 (2)
a b c a b d a b
a b c a b d a b
= = − + = − −
= − = − + = − −
/$(⇒
( ) : 4 0
P x y z
+ − − =
/$<(⇒
( ) : 7 17 5 4 0
P x y z
− + − =
HT 15. :&%=3%C!
,
Oxyz
%K
2 2 2
( ) : 2 4 6 11 0
S x y z x y z
+ + − + − − =
( ) : 2 2 17 0
x y z
α
+ − + =
7&;$β("%"%$α(V$M(%%78
&qi_
6
p
π
=
Giải
:.0%$β(tt$α(A$β(7&;
( ) : 2 2 0( 17)
x y z D D
β
+ − + = ≠
$M(h
(1; 2;3)
I
−
4i=j
5
R
=
)78&quπAi=j
3
r
=
f%vnr$β(
2 2 2 2
5 3 4
h R r
= − = − =
0%
(loaïi)
2 2 2
2.1 2( 2) 3
7
4 5 12
17
2 2 ( 1)
D
D
D
D
+ − − +
= −
= ⇔ − + = ⇔
=
+ + −
D$β(7&;
2 2 – – 7 0
x y z
+ =
Dạng 3: Viết phương trình mặt phẳng liên quan đến khoảng cách
HT 16. :&% = 3 %C !
,
Oxyz
% *
( 1;1;0), (0; 0; 2), (1;1;1)
A B I
− −
7 &;
$(2@F4e8=%vnr$(i_
3
Giải
7&;$(BC.
2 2 2
0 ( 0)
ax by cz d a b c+ + + = + + ≠
:.
( )
( )
( ,( )) 3
A P
B P
d I P
∈
∈
=
⇔
,2 , (1)
5 7 ,2 , (2)
a b c a b d a b
a b c a b d a b
= − = − = −
= = − = −
/$(⇒7&;$(.
2 0
x y z
− + + =
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾNu
/$<(⇒7&;$(.
7 5 2 0
x y z
+ + + =
HT 17. :&%=3%C!
,
Oxyz
%78
( ) : 1 2
1
x t
d y t
z
=
= − +
=
*
( 1;2;3)
A
−
7
&;$(W78$B("%%=%vn*@$(i_E
Giải
:.$B(2*
(0; 1;1)
M
−
:G:
(1;2; 0)
u
=
J>
( ; ; )
n a b c
=
2 2 2
0
a b c
+ + ≠
::$(
7&;$(.
( 0) ( 1) ( 1) 0 0
a x b y c z ax by cz b c
− + + + − = ⇔ + + + − =
$(
0%$(W$B(A.
. 0 2 0 2
u n a b a b
= ⇔ + = ⇔ = −
$<(
( )
2 2
2 2 2 2 2
3 2 5 2
,( ) 3 3 3 5 2 3 5
5
a b c b c
d A P b c b c
a b c b c
− + + +
= ⇔ = ⇔ = ⇔ + = +
+ + +
(
)
2
2 2
4 4 0 2 0 2
b bc c b c c b
⇔ − + = ⇔ − = ⇔ =
$E(
:n$<($E(4>
1
b
= −
⇒
2, 2
a c
= = −
⇒7&;$(.
2 2 1 0
x y z
− − + =
HT 18. :&%=3&l>!
Oxyz
4%*
(1;2; 3)
A
4
(0; 1;2)
B
−
4
(1;1;1)
C
7&;
( )
P
2
A
#>!
O
"%%=%vn
B
( )
P
i_=%vn
C
( )
P
•;N∈$(A
( ) : 0
P ax by cz
+ + =
4
2 2 2
0
a b c
+ + ≠
0%@∈$(⇒
2 3 0
a b c
+ + =
$(
( ,( )) ( ,( )) 2
d B P d C P b c a b c
= ⇔ − + = + +
$<(
:n$($<(⇒
0
b
=
%
0
c
=
•
0
b
=
;
3
a c
= −
⇒
( ) : 3 0
P x z
− =
•
0
c
=
;
2
a b
= −
⇒
( ) : 2 0
P x y
− =
HT 19. :&%=3%C!
,
Oxyz
7&;$(2N4$?(.
0
x y z
+ + =
* $H<H6(!=%vi_
2
Giải
:.7&;$(2NABC.
0
Ax By Cz
+ + =
$
2 2 2
0
A B C
+ + ≠
(
;$(⊥$?(A.
1. 1. 1. 0
A B C
+ + =
⇔
C A B
= − −
$(
( ,( )) 2
d M P
=
⇔
2 2 2
2
2
A B C
A B C
+ −
=
+ +
⇔
2 2 2 2
( 2 ) 2( )
A B C A B C
+ − = + +
$<(
:n$($<(7L.
A
2
8 5 0
B B
+ =
⇔
A
0 (3)
8 5 0 (4)
B
B
=
+ =
:n$E(.Fow⇒Go6@G>@o4Go6⇒
( ) : 0
P x z
− =
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾNp
:n$I(.x@/sFowG>@os4Fo6x⇒GoE⇒
( ) : 5 8 3 0
P x y z
− + =
HT 20. :&%=3&l>!
,
Oxyz
%78∆.
1 3
1 1 4
x y z
− −
= =
* $wH6<Hw(
7&;$(2* 4"%"%78∆4e8=%v578∆
$(i_I
Giải
:.7&;$(2 $wH6<Hw(BC.
2 0
ax by cz b
+ + + =
$
2 2
0
a b
+ ≠
(
∆2*@$HEHw(!:G
(1;1;4)
u
=
:.
2 2 2
4 0
( )
5
4
( ;( ))
a b c
P
a b
d A P d
a b c
+ + =
∆
+
⇔
=
=
+ +
⇔
4
2
a c
a c
=
= −
4
a c
=
G>
4, 1 8
a c b
= = ⇒ = −
⇒7&;$(.
4 8 16 0
x y z
− + − =
2
a c
= −
G>
2, 1 2
a c b
= = − ⇒ =
⇒7&;$(.
2 2 4 0
+ − + =
x y z
HT 21. :&%=3&l>!
Oxyz
4%i*
(1;1; 1)
A
−
4
(1;1;2)
B
4
( 1;2; 2)
C
− −
$(.
2 2 1 0
x y z
− + + =
7&;
( )
α
2@4$(4V78FGCr
"%%
2
IB IC
=
Giải
:.7&;
( )
α
BC.
ax
0
by cz d
+ + + =
4
2 2 2
0
a b c
+ + ≠
0%
(1;1; 1)
( )
A
α
− ∈
A.
0
a b c d
+ − + =
$(H
( )
( )
P
α
⊥
A
2 2 0
a b c
− + =
$<(
2
IB IC
=
⇒
( , ( ;
( )) 2 ( ))
d B d C
α α
=
⇒
2 2 2 2 2 2
2 2 2
2
a b c d a b c d
a b c a b c
+ + + − + − +
=
+ + + +
3 3 6 0
(3)
5 2 3 0
a b c d
a b c d
− + − =
⇔
− + − + =
:n$(4$<(4$E(<&78L".
:P.
0
1 3
2 2 0 ; ;
2 2
3 3 6 0
a b c d
a b c b a c a d a
a b c d
+ − + =
− −
− + = ⇔ = = − =
− + − =
G>
2 1; 2; 3
a b c d
= ⇒ = − = − = −
⇒
( )
α
.
2 2 3 0
x y z
− − − =
:P<.
0
3 3
2 2 0 ; ;
2 2
5 2 3 0
a b c d
a b c b a c a d a
a b c d
+ − + =
−
− + = ⇔ = = =
− + − + =
G>
2 3; 2; 3
a b c d
= ⇒ = = = −
⇒
( )
α
.
2 3 2 3 0
x y z
+ + − =
D.
( )
α
.
2 2 3 0
x y z
− − − =
%
( )
α
.
2 3 2 3 0
x y z
+ + − =
HT 22. :&% =%Z [ Z\ %\ %Z\
,
Oxyz
% 7^ b
1 2
,
d d
y 7\ %[ 7 &d^
1
2 2 3
:
2 1 3
x y z
d
− − −
= =
4
2
1 2 1
:
2 1 4
x y z
d
− − −
= =
−
c7&d^a\b[y7^ b
1 2
,
d d
Giải
:
1
d
2
(2;2;3)
A
4
1
(2;1; 3)
d
u =
4
2
d
2
(1;2;1)
B
2
(2; 1;4)
d
u = −
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾNx
0%$(z
1 2
,
d d
A$("%"%
1 2
,
d d
⇒
1 2
, (7; 2; 4)
P d d
n u u
= = − −
⇒7&;$(BC.
7 2 4 0
x y z d
− − + =
0%$(z
1 2
,
d d
"&
( ,( )) ( ,( ))
d A P d B P
=
⇔
7.2 2.2 4.3 7.1 2.2 4.1
69 69
d d
− − + − − +
=
3
2 1
2
d d d
⇔ − = − ⇔ =
⇒7&;$(.
14 4 8 3 0
x y z
− − + =
HT 23. :&%=%Z[ Z\%\%Z\
,
Oxyz
%7^ b
1 2
,
d d
y7\%[7&d^
1
1
: 2
1
x t
d y t
z
= +
= −
=
4
2
2 1 1
:
1 2 2
x y z
d
− − +
= =
−
c7&d^a\b$("%"%
1
d
2
d
4"%%=%vn
1
d
$(gK=%vn
2
d
$(
Giải
:.
1
d
2
(1;2;1)
A
:G
1
(1; 1;0)
u = −
2
d
2
(2;1; 1)
B
−
:G
2
(1; 2;2)
u = −
J>
n
$(4;$("%"%
1
d
2
d
A
1 2
, ( 2; 2; 1)
n u u
= = − − −
⇒7&;$(.
2 2 0
x y z m
+ + + =
1
7
( ,( )) ( ;( ))
3
m
d d P d A P
+
= =
H
2
5
( ,( )) ( ,( ))
3
m
d d P d B P
+
= =
1 2
( ,( )) 2 ( ,( ))
d d P d d P
=
7 2. 5
m m
⇔ + = +
7 2(5 )
7 2(5 )
m m
m m
+ = +
⇔
+ = − +
17
3;
3
m m⇔ = − = −
/
3
m
= −
⇒
( ) : 2 2 – 3 0
P x y z
+ + =
/
17
3
m = −
⇒
17
( ) : 2 2 0
3
P x y z+ + − =
HT 24. :&%=%Z[ Z\%\%Z\
,
Oxyz
c7&d^a\b$(2]
(0; 1;2)
A
−
4
(1;0;3)
B
^c+[ [ a\y$M(.
2 2 2
( 1) ( 2) ( 1) 2
x y z
− + − + + =
Giải
:.$M(h
(1;2; 1)
I
−
4i=j
2
R
=
7&;$(BC.
2 2 2
0 ( 0)
ax by cz d a b c+ + + = + + ≠
:.
( )
( )
( ,( ))
A P
B P
d I P R
∈
∈
=
⇔
, , 2 3 (1)
3 8 , , 2 3 (2)
a b c a b d a b
a b c a b d a b
= − = − − = +
= − = − − = +
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN{
/$(⇒7&;$(.
1 0
x y
− − =
/$<(⇒7&;$(.
8 3 5 7 0
x y z
− − + =
Dạng 4: Viết phương trình mặt phẳng liên quan đến góc
HT 25. :&%=3%C!
,
Oxyz
%$α(W78$∆(.
1
1 1 2
x y z
−
= =
− −
C%
$(.
2 2 1 0
x y z
− − + =
!uw
w
:;>!%* $α(&lNO
Giải
$∆(2*
(1;0;0)
A
:G
(1; 1; 2)
u
= − −
$(
(2; 2; 1)
n
′
= − −
J%*
(0; 0; )
M m
%
( 1;0; )
AM m
= −
$α(
, ( ; 2;1)
n AM u m m
= = −
$α($(.
2 2 1 0
x y z
− − + =
C%uw
w
A.
(
)
2
2
1 1 1
cos , 2 4 1 0
2 2
2 4 5
n n m m
m m
′
= ⇔ = ⇔ − + =
− +
⇔
2 2
m = −
2 2
m = +
Vậy,
(0;0;2 2)
M
−
(0;0;2 2)
M
+
HT 26. :&%=3%C!
,
Oxyz
7&;$(2%B
( ) : 2 – – 1 0
x y
=
α
4
( ) : 2 – 0
x z
β
=
C%
( ) : – 2 2 – 1 0
Q x y z
+ =
!ϕ
2 2
cos
9
ϕ =
Giải
Yg
(0;1;0), (1;3;2)
A B d
∈
$(2@⇒7&;$(BC.
– 0
Ax By Cz B
+ + =
$(2FA.
3 2 – 0
A B C B
+ + =
⇒
(2 2 )
A B C
= − +
⇒
( ) : (2 2 ) – 0
P B C x By Cz B
− + + + =
2 2 2
2 2 2 2
2 2
cos
9
3 (2 2 )
B C B C
B C B C
ϕ
− − − +
= =
+ + +
⇔
2 2
13 8 – 5 0
B BC C
+ =
G>
5
1 1;
13
C B B= ⇒ = =
/
1
B C
= =
⇒
( ) : 4 – 1 0
P x y z
− + + =
/
,
5
1
13
B C
= =
⇒
( ) : 23 5 13 – 5 0
P x y z
− + + =
HT 27. :&% = 3 > !
,
Oxyz
% *
( 1;2; 3), (2; 1; 6)
A B
− − − −
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾNw
( ) : 2 3 0
P x y z
+ + − =
7 &; $?( W @F C% $( ! α %v|
3
cos
6
α =
Giải
7&;$?(BC.
2 2 2
0 ( 0)
ax by cz d a b c+ + + = + + ≠
:.
( )
( )
3
cos
6
A Q
B Q
α
∈
∈
=
⇔
a
2 2 2
2 3 0
2 6 0
2 3
6
1 4 1
a b c d
b c d
a b c
a b c
− + − + =
− − + =
+ +
=
+ + + +
⇔
4 , 3 , 15
, 0,
a b c b d b
a b c d b
= − = − = −
= − = = −
⇒7&;$?(.
4 3 15 0
x y z
− + + =
%$?(.
3 0
x y
− − =
HT 28. :&% = 3 > !
,
Oxyz
%
( ) : 5 2 5 1 0
P x y z
− + − =
( ) : 4 8 12 0
Q x y z
− − + =
YD7&;
( )
R
2*#>!N4$(
C%$?(!
0
45
=
α
Giải
Jv"}7&;
2 2 2
( ) : 0 ( 0)
R ax by cz d a b c+ + + = + + ≠
:.
( ) ( ) 5 2 5 0
R P a b c
⊥ ⇔ − + =
$(H
0
2 2 2
4 8 2
cos(( ),( )) cos 45
2
9
a b c
R Q
a b c
− −
= ⇔ =
+ +
$<(
:n$($<(⇒
2 2
7 6 0
7
a c
a ac c
c a
= −
+ − = ⇔
=
•
a c
= −
.>
1, 0, 1
a b c
= = = −
⇒7&;
( ) : 0
R x z
− =
•
7
c a
=
.>
1, 20, 7
a b c
= = =
⇒7&;
( ) : 20 7 0
R x y z
+ + =
Dạng 5: Viết phương trình mặt phẳng liên quan đến tam giác
HT 29. :&%=3&l>!
,
Oxyz
%*@$IHsHu(7&;$(2@4V
&l>!K7LCr4~4f@&1hr~f
Giải
J>r$HwHw(4~$wHiHw(4f$wHwH( ⇒
( ) : 1
x y z
P
a b c
+ + =
(4 ;5;6), (4;5 ; 6)
(0; ; ), ( ;0; )
IA a JA b
JK b c IK a c
= − = −
= − = −
⇒
⇒⇒
⇒
4 5 6
1
5 6 0
4 6 0
a b c
b c
a c
+ + =
− + =
− + =
⇒
⇒⇒
⇒
77 77 77
; ;
4 5 6
a b c= = =
D7&;$(.
4 5 6 77 0
x y z
+ + − =
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN
HT 30. :&%=3%C!
,
Oxyz
%@$<HwHw( $HH( $(•2@ V&l
N+4NK7LCF$wHiHw(4G$wHwH($i€w4€w(GW&_.
2
bc
b c+ =
:n4;i4*B3j
@FG•g
Giải
:.7&;$(BC.
1.
2
x y z
b c
+ + =
;
( )
M P
∈
A
1 1 1
1
2
b c
+ + =
⇔
2
bc
b c+ =
:
( 2; ; 0)
AB b
−
4
( 2;0; ).
AC c
−
f
2 2 2
( )
S b c b c
= + + +
;
2 2 2
2 ; ( ) 4
b c bc b c bc
+ ≥ + ≥
A
6
S bc
≥
2( ) 4 16
bc b c bc bc
= + ≥ ⇒ ≥
0%
96
S
≥
0g‚o‚+v&⇔
4
b c
= =
D.
min 96
S
=
=
4
b c
= =
HT 31. :&%=%C!
,
Oxyz
%*
(2;2;4)
A
( ) :
P
4 0
x y z
+ + + =
7&;
$?("%"%$($?(V
,
Ox
Oy
C<*F4G"%%@FGB3ji_u
Giải
;$?(tt$(A$?(.
0 ( 4)
x y z d d
+ + + = ≠
Jv"}
Ox
( ) , ( )
B Q C Q Oy
= ∩ = ∩
⇒
( ;0;0), (0; ; 0) ( 0)
B d C d d
− − <
1
, 6
2
ABC
S AB AC
= =
⇔
2
d
= −
⇒
( ) : 2 0
Q x y z
+ + − =
Dạng 6: Các dạng khác về viết phương trình mặt phẳng (Nâng cao)
HT 32. :&%=3>!
,
Oxyz
%*
(2; 1;1)
A
−
7&;$(2*@
#>!N!=%vg
Giải
:
( ,( ))
d O P OA
≤
0%
max
( ,( ))
d O P OA
=
+v&
( )
OA P
⇔ ⊥
A$(K;2@N@
:
(2; 1;1)
OA
= −
D7&;$(.
2 6 0
x y z
− + − =
HT 33. :&% = 3 > !
,
Oxyz
% * @$wH <H 6( 78 B 7 &;.
1 1
2 1 3
x y z
− −
= =
YD7&;$(2@4"%"%B=%vnB$(g
Giải
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN<
J>P;@&AB⇒B$B4$((oB$P4$((
Jv"}*r;PA$(4
:
AH HI
≥
⇒Prg=
A I
≡
D$(K;2@D
AH
⇒$(.
7 5 77 0
x y z
+ − − =
HT 34. :&%=3>!
,
Oxyz
%78
2 2
: .
1 2 2
x y z
d
+ −
= =
−
J>∆782
*@$IHwH6("%"%
d
r$6<HwH<(;@&A
d
7&;
W∆=%v
d
g
Giải
J>$(W∆4;
( ) ( )
P d
%
( ) ( )
P d
⊃
J>P;r&A$(:
IH IA
≤
IH AH
⊥
=
( ,( )) ( ,( ))
( )
d d P d I P IH
H P
= =
∈
:&%$(4
IH IA
≤
HB%
axIH = IA H A
m
⇔ ≡
Y-$(ƒ,&j$
w
(⊥r@C@
$
w
(
(
)
6; 0; 3
n IA
= = −
4'7
(
)
2; 0; 1
v
= −
7&;$
w
(.
2( 4) 1.( 1) 2 9 0
x z x z
− − + = − − =
HT 35. :&%=3>!
,
Oxyz
%78
1 2
:
2 1 2
x y z
d
− −
= =
*
(2; 5; 3)
A
7
&;$(WB"%%=%vn@$(g
Giải
7&;
2 2 2
( ) : 0 ( 0)
P ax by cz d a b c+ + + = + + ≠
$(
( ; ; )
n a b c
=
4
d
2*
(1;0;2)
M
:G
(2;1;2)
u
=
;$(⊃BA
( )
. 0
M P
n u
∈
=
⇒
2 0
2 2 0
a c d
a b c
+ + =
+ + =
⇒
2 (2 )
c a b
d a b
= − +
= +
„k<&78L.
:P.Siow;$(.
1 0
x z
− + =
f.
( ,( )) 0
d A P
=
:P<.Si≠wG>
1
b
=
7L$(.
2 2 (2 1) 2 2 0
ax y a z a
+ − + + + =
f.
2 2
9 9
( ,( )) 3 2
8 4 5
1 3
2 2
2 2
d A P
a a
a
= = ≤
+ +
+ +
D
max ( ,( )) 3 2
d A P
=
⇔
1 1
2 0
2 4
a a
+ = ⇔ = −
f.$(.
4 3 0
x y z
− + − =
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾNE
HT 36. :&%=%C!
,
Oxyz
%*
(0; 1;2)
M
−
( 1;1;3)
N
−
7&;$(
2 4S"%%=%vn*
(0;0;2)
K
$(g
Giải
7&;$(BC.
( 1) ( 2) 0 2 0
Ax B y C z Ax By Cz B C
+ + + − = ⇔ + + + − =
2 2 2
( 0)
A B C
+ + ≠
( 1;1;3) ( ) 3 2 0 2
N P A B C B C A B C
− ∈ ⇔ − + + + − = ⇔ = +
( ) : (2 ) 2 0
P B C x By Cz B C
⇒ + + + + − =
( ,( ))
2 2
4 2 4
B
d K P
B C BC
=
+ +
•SFow;B$f4$((ow$%C(
•S
0
B
≠
;
2 2 2
1 1
( ,( ))
2
4 2 4
2 1 2
B
d K P
B C BC
C
B
= = ≤
+ +
+ +
0g…o†+v&=Fo6GG>Gof7&;
( ) : – 3 0
P x y z
+ + =
HT 37. :&% = 3 > !
,
Oxyz
% $?(.
2 5 0
x y z
+ − + =
78
1 1 3
:
2 1 1
x y z
d
+ + −
= =
7&;$(W78BC%$?(!
•g
Giải
7&;$(BC.
2 2 2
( ) : 0 ( 0)
P ax by cz d a b c+ + + = + + ≠
J>
(( ),( ))
P Q
=
α
G>*
( 1; 1;3), (1;0;4)
M N d
− − ∈
:.
( )
( ) 7 4
M P c a b
N P d a b
∈ = − −
⇒
∈ = +
⇒$(.
( 2 ) 7 4 0
ax by a b z a b
+ + − − + + =
⇒
2 2
3
cos .
6
5 4 2
a b
a ab b
α
+
=
+ +
:P.Sow;
2
3 3
cos .
2
6
2
b
b
α = =
⇒
0
30
=
α
:P<.S≠w;
2
1
3
cos .
6
5 4 2
b
a
b b
a a
α
+
=
+ +
)
b
x
a
=
2
( ) cos
f x
α
=
„k"#
2
2
9 2 1
( ) .
6
5 4 2
x x
f x
x x
+ +
=
+ +
01%FF:4g
0 0
min ( ) 0 cos 0 90 30
f x
α
= ⇔ = ⇔ = >
α
0%X&78L%v|4Wowf>
1, 1, 4
b c d
= = =
D.$(.
4 0
y z
− + =
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾNI
HT 38. :&%=3%C!
,
Oxyz
7&;$(2*
(9;1;1)
M
4V
Ox
4
,
Oy
Oz
C@4F4G"%%*jWB3N@FG&,•g
Giải
J"}
( ;0;0) , (0; ; 0) , (0; 0; )
A a Ox B b Oy C c Oz
∈ ∈ ∈
( , , 0)
a b c
>
f7&;$(BC.
1
x y z
a b c
+ + =
:.
(9;1;1) ( )
M P
∈
⇒
9 1 1
1
a b c
+ + =
$(H
1
6
OABC
V abc
=
$<(
$(⇔
9
abc bc ac ab
= + +
‡
2
3
3 9( )
abc
⇔
3 2
( ) 27.9( ) 243
abc abc abc
≥ ⇔ ≥
0g‚o‚+v&⇔
27
9
3
9 1 1
1
3
a
bc ac ab
b
c
a b c
=
= =
⇔ =
+ + =
=
⇒$(.
1
27 3 3
x y z
+ + =
HT 39. :&%=3%C!
,
Oxyz
7&;$(2*
(1;2;3)
M
4V
Ox
4
,
Oy
Oz
C@4F4G"%%i*W
2 2 2
1 1 1
OA OB OC
+ +
&,•g
Giải
J"}
( ;0;0) , (0; ; 0) , (0; 0; )
A a Ox B b Oy C c Oz
∈ ∈ ∈
( , , 0)
a b c
>
f7&;$(BC.
1
x y z
a b c
+ + =
:.
(1;2; 3) ( )
M P
∈
⇒
1 2 3
1
a b c
+ + =
:.
2 2 2 2 2 2
1 1 1 1 1 1
OA OB OC a b c
+ + = + +
:%igWF%+=.
( )
2
2 2 2
2 2 2
1 2 3 1 1 1
1 2 3
a b c
a b c
+ + ≤ + + + +
2 2 2
1 1 1 1
14
a b c
⇒ + + ≥
0g…o†+v&=
2 2 2
1 2 3
1
1 1 1
2 3
1 1 1 1
14
a b c
a b c
a b c
+ + =
= =
+ + =
14
14
2
14
3
a
b
c
=
⇔ =
=
D47&;.
( ) : 2 3 14 0
P x y z
+ + − =
HT 40. :&%=3%C!
,
Oxyz
7&;$(2*
(2;5;3)
M
4V
Ox
4
,
Oy
Oz
C@4F4G"%%i*W
OA OB OC
+ +
&,•g
Giải
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾNs
J"}
( ;0;0) , (0; ;0) , (0;0; )
A a Ox B b Oy C c Oz
∈ ∈ ∈
( , , 0)
a b c
>
f7&;$(BC.
1
x y z
a b c
+ + =
:.
(1;2; 3) ( )
M P
∈
⇒
2 5 3
1
a b c
+ + =
( )
( ) ( ) ( )
2 2 2
2 2 2
2 5 3 2 5 3
a b c a b c
a b c a b c
⇒ + + + + = + + + +
(
)
2
2 5 3 10 2 10 2 6 2 15
≥ + + = + + +
2 5 3
a b c
⇒ + + ≥ + +
0g…o†+v&=.
2 5 3
1
2 6 10
2 5 3
5 10 15
3 6 15
10 2 10 2 6 2 15
a b c
a
b
a b c
c
a b c
+ + =
= + +
= = ⇔ = + +
= + +
+ + = + + +
D4
( ) : 1
2 6 10 5 10 15 3 6 15
x y z
P
+ + =
+ + + + + +
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾNu
PHẦN II VIẾT PHƯƠNG TRÌNH ĐƯỜNG THẲNG
Dạng 1: Viết phương trình đường thẳng bằng cách xác định vectơ chỉ phương
X778"%"%%&'78
!78"#X7
)*;X778-"#".
+ Trực tiếp:01%#A35#.):):4 ˆ:P‰SJ
+ Gián tiếp::;='7'X778
BÀI TẬP
HT 41. :&% =3>!
,
Oxyz
%78
1 1 2
:
2 1 2
x y z
d
− + −
= =
−
*
( 2;3;1)
A
−
7&;78
,
∆
i
∆
2@
/ /
d
∆
Giải
:.
/ /
d
∆
A
∆
X7.
(2; 1;2)
u
= −
D47&;jV78
2 3 1
:
2 1 2
x y z
+ − −
∆ = =
−
HT 42. :&%=3>!
,
Oxyz
%
( ) : 1 0
P x y z
+ + − =
*
(1;2; 3)
A
7
&;78
d
2@$(
Giải
:4
( )
d P
⊥
A
d
!X7.
(1;1;1)
u
=
D47&;jV78
1 2 3
:
1 1 1
x y z
d
− − −
= =
HT 43. :&% = 3 > !
,
Oxyz
% 78
1
1 1 2
:
1 2 1
x y z
d
− + −
= =
−
H
2
1 1 1
:
2 1 1
x y z
d
+ − +
= =
−
*
(1;2; 3)
A
7&;78
∆
2@v
1 2
, .
d d
Giải
J>
1 2
, ,
u u u
K7LX7
1 2
, ,
d d
∆
1 2
(1; 2;1), (2;1; 1)
u u
= − = −
:.
1 1
2 2
d u u
d u u
∆ ⊥ ⊥
⇒
∆ ⊥ ⊥
⇒ ∆
X7
[ ]
1 2
, (1; 3; 3)
u u u
= = −
D47&;78
1 2 3
:
1 3 3
x y z
− − −
∆ = =
−
HT 44. :&%=3>!
,
Oxyz
%
( ) : 1 0
P x y z
+ + + =
H
( ) : 2 0
Q x y z
+ − =
*
(1;2; 3)
A
7&;78
d
2@'"%"%$($?(
Giải
J>
u
X7
d
1 2
,
n n
K7L$($?(
1 2
(1;1;1), (1;2; 1)
n n
= = −
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾNp
:.
1
2
/ /( )
/ /( )
d P u n
d Q u n
⊥
⇒
⊥
M&4
d
X7
[ ]=(-3;2;1)
1 2
;u n n=
D47&;78
1 2 3
:
3 2 1
x y z
d
− − −
= =
−
HT 45. :&% = 3 %C !
,
Oxyz
% 78
1 1 2
:
2 1 3
x y z
d
+ − −
= =
( ) : 1 0
P x y z
− − − =
7&;78∆2
(1;1; 2)
A
−
4"%"%
( )
P
78
d
Giải
J>
u
X778
.
∆
(2;1; 3)
d
u =
X7
.
d
(1; 1; 1)
P
n
= − −
$(
:.
/ /( )
d
P
d u u
P u n
∆ ⊥ ⊥
⇒
∆ ⊥
⇒
∆
X7
; (2;5; 3)
d P
u u n
= = −
∆D
u
:G⇒
1 1 2
:
2 5 3
x y z
− − +
∆ = =
−
HT 46. :&% = 3 %C !
,
Oxyz
% 78
1 2
:
1 2 1
x y z
d
+ −
= =
−
$
t R
∈
(
( ) : 2 2 3 0
P x y z
− − − =
7&;"#78∆_&A$(4V$B(
Giải
J>@oB∩$(⇒
(1; 3;1)
A
−
:.
(2; 1; 2)
P
n
= − −
!$(
( 1;2;1)
d
u = −
!X7
d
:.
( )
P
d
P u n
d u u
∆
∆
∆ ⊂ ⊥
⇒
∆ ⊥ ⊥
M&4
∆
X7.
[ ]
, (3;0;3)
P d
u n u
∆
= =
D47&;78∆.
1
3
1
x t
y
z t
= +
= −
= +
HT 47. :&% = 3 %C !
,
Oxyz
% * $<H H w( 78 ∆.
1 1
2 1 1
x y z
− +
= =
−
YD
7&;78B2* 4V∆
Giải
:.
(2;1; 1)
u
∆
= −
J>PoB∩∆Jv"}
(1 2 ; 1 ; )
H t t t
+ − + −
⇒
(2 1; 2; )
MH t t t
= − − −
:%zi4
d
⊥ ∆ ⇒
MH u
∆
⊥
⇔
2(2 1) ( 2) ( ) 0
t t t
− + − − − =
⇔
2
3
t
=
⇒
3 (1; 4; 2)
d
u MH
= = − −
⇒
2
: 1 4
2
x t
d y t
z t
= +
= −
=
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾNx
HT 48. :&% =3&l%C !
,
Oxyz
%
( ) : 2 2 1 0
P x y z
+ − + =
*@$HpH6(4
F$IH<Hw(YD7&;78
d
;78@F&A$(
Giải
J>G;@&A$(
J>
∆
782
A
$(
M&4
( ).
C P
= ∆ ∩
:.
( )
P
∆ ⊥ ⇒
∆
!X7.
(1;2; 2)
P
u n
∆
= = −
D47&;78
1
: 7 2
1 2
x t
y t
z t
= +
∆ = +
= − −
:4
C
∈ ∆
A"&
(1 , 7 2 , 1 2 )
C c c c
+ + − −
=4
( )
C P
∈ ⇒
1 14 4 2 4 1 0
c c c
+ + + + + + =
2
c
⇔ = −
D4
( 1;3;3)
C
−
J>0;F&A$(:71&A.
(3; 0;2)
D
f4.
d CD
≡
(4; 3; 1)
CD
− −
D47&;78
3 2
:
4 3 1
x y z
d
− −
= =
− −
HT 49. :&% = 3 %C !
,
Oxyz
7 &; ; 78
2 0
:
3 2 3 0
x z
d
x y z
− =
− + − =
&A
: 2 5 0
P x y z
− + + =
Giải
7&;"#B.
4
3
7
2
2
x t
y t
z t
=
= − +
=
$(
(1; 2;1)
n
= −
J>
( )
A d P
= ∩
⇒
11
4; ;2
2
A
:
3 3
0; ;0 , 0; ;0 ( )
2 2
B d B P
− ∈ − ∉
J>
( ; ; )
H x y z
;F&A$(:;7L
4 7 4
; ;
3 6 3
H
− −
J>∆;B&A$(⇒∆2@P
⇒∆:G
3 (16;13;10)
u HA
= =
⇒7&;∆.
4 16
11
13
2
2 10
x t
y t
z t
= +
= +
= +
HT 50. :&%=3>!
,
Oxyz
>@4F4GK7L%*
(
)
: 6 2 3 6 0
P x y z
+ + − =
, ,
Ox Oy Oz
YD7&;78B2h78&q%C@FGe8
$(
Giải
:.
( ) (1; 0;0); ( ) (0; 3; 0); ( ) (0; 0;2)
P Ox A P Oy B P Oz C
∩ = ∩ = ∩ =
J>∆78$N@F(C&* @FH
$α(&&1CNGH
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN{
rhK%CWB3N@FG:.
( )
I
= ∆ ∩
α
⇒
1 3
; ;1
2 2
I
J>~h78&q%C∆@FG;r~⊥$@FG(4ABj78r~
⇒7&;78B.
1
6
2
3
2
2
1 3
x t
y t
z t
= +
= +
= +
HT 51. :&% = 3 > !
,
Oxyz
% E *
(1;2; 1), (2;1;1); (0;1;2)
A B C
−
78
1 1 2
:
2 1 2
x y z
d
− + +
= =
−
YD7&;78∆2&1h@FG4_&%
$@FG(78B
Giải
:
(1; 1;2), ( 1; 1;3) , ( 1; 5; 2)
AB AC AB AC
= − = − − ⇒ = − − −
⇒7&;
( ) : 5 2 9 0
ABC x y z
+ + − =
J>&1h@FG
( ; ; )
H a b c
4=3.
( )
. 0
2 3 2
. 0 3 0 1 (2;1;1)
5 2 9 1
BH AC
a b c a
CH AB a b c b H
a b c c
H ABC
=
− + = =
= ⇔ + − = ⇔ = ⇒
+ + = =
∈
0%78∆_&%$@FG($B(A.
, (12;2; 11)
ABC
ABC d
d
u n
u n u
u u
∆
∆
∆
⊥
⇒ = = −
⊥
D7&;78
2 1 1
:
12 2 11
x y z
− − −
∆ = =
−
Dạng 2: Viết phương trình đường thẳng liên quan đến một đường thẳng khác
HT 52. :&% = 3 > !
,
Oxyz
% * $<H H w( 78
1 1
:
2 1 1
x y z
d
− +
= =
−
7&;78∆2* 4V78B;%C!* ′#+W
2B
Giải
::M
1 2
: 1
x t
d y t
z t
= +
= − +
= −
BX7
(2;1; 1)
u
= −
J>P; &AB⇒
(1 2 ; 1 ; )
H t t t
+ − + −
⇒
(2 1; 2 ; )
MH t t t
= − − + −
: P⊥B⇔
. 0
MH u
=
⇔
2
3
t
=
⇒
7 1 2
; ;
3 3 3
H
− −
4
1 4 2
; ;
3 3 3
MH
= − −
7&;78∆.
2 1
1 4 2
x y z
− −
= =
− −
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN<w
J> ′*#+W 2B⇒P&* ′⇒
8 5 4
; ;
3 3 3
M
′
− −
HT 53. :&% = 3 %C !
,
Oxyz
% 78
1 2 2
:
3 2 2
x y z
d
+ − −
= =
−
( ) : 3 2 2 0
+ + + =
P x y z
YD7&;78∆"%"%$(42 $<H<HI(V78
B
Giải
)78$B(::M.
1 3
2 2
2 2
x t
y t
z t
= − +
= −
= +
$(::
(1; 3; 2)
n
=
Jv"}S$−/EH<−<H</<(∈B⇒
(3 3; 2 ;2 2)
MN t t t
= − − −
)* Stt$(;
. 0 7
MN n t
= ⇔ =
⇒S$<wH−<Hu(
7&;78∆.
2 2 4
9 7 6
x y z
− − −
= =
−
HT 54. :&%=3%C!
,
Oxyz
%<$(4$?(78$B(K7L7&;.
1 1
( ) : 2 0, ( ) : 3 3 1 0, ( ) :
2 1 1
x y z
P x y z Q x y z d
− −
− + = − + + = = =
YD7&;78∆_&%$(
"%"%$?(V78$B(
Giải
$(4$?(K7L::
(1; 2;1), (1; 3; 3) , ( 3; 2; 1)
P Q P Q
n n n n
= − = − ⇒ = − − −
::M$B(.
1 2 , , 1
x t y t z t
= + = = +
J>@o$B(∩$∆(⇒
(1 2 ; ;1 )
A t t t
+ +
0%@⊂$(A.
1 2 2 1 0 2
t t t t
+ − + + = ⇔ = −
⇒
( 3; 2; 1)
A
− − −
:%v.
, ( 3; 2; 1)
P
P Q
Q
u n
u n n
u n
∆
∆
∆
⊥
⇒ = = − − −
⊥
D7&;78
3 2 1
( ) :
3 2 1
x y z
+ + +
∆ = =
HT 55. :&% = 3 %C !
,
Oxyz
% E *
(1;2; 1), (2;1;1), (0;1;2)
A B C
−
78
1 1 2
( ) :
2 1 2
x y z
d
− + +
= =
−
YD7&;78∆2&1h@FG4_&%
$@FG(78$B(
Giải
:
(1; 1;2), ( 1; 1;3) , ( 1; 5; 2)
AB AC AB AC
= − = − − ⇒ = − − −
⇒7&;$@FG(.
5 2 9 0
x y z
+ + − =
J>&1h∆@FG
( ; ; )
H a b c
. 0
2 3 2
. 0 3 0 1 (2;1;1)
( ) 5 2 9 1
BH AC
a b c a
CH AB a b c b H
H ABC a b c c
=
− + = =
= ⇔ + − = ⇔ = ⇒
∈ + + = =
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN<
0%$∆(⊂$@FG($B(A.
, (12;2; 11)
ABC
ABC d
d
u n
u n n
u u
∆
∆
∆
⊥
⇒ = = −
⊥
⇒:78
2 1 1
:
12 2 11
x y z
− − −
∆ = =
−
HT 56. :&% = 3 %C !
,
Oxyz
% $(.
2 5 0
x y z
+ − + =
4 78
3 1 3
:
2 1 1
x y z
d
+ + −
= =
*
( 2;3; 4)
A
−
7&;78∆_&A$(42%*B
$(4e8B:;* &A∆"%%=%v@ Vg
Giải
J>FoB∩$(⇒
( 1;0;4)
B
−
;
( )
P
d
∆ ⊂
∆ ⊥
A
P
d
u n
u u
∆
∆
⊥
⊥
0%*>
1
, (1; 1; 1)
3
P d
u n u
∆
= = − −
⇒:∆.
1
4
x t
y t
z t
= − +
= −
= −
Jv"}
( 1 ; ;4 )
M t t t
− + − − ∈ ∆
⇒
2
2
4 14 14
3 8 10 3
3 3 3
AM t t t
= + + = + + ≥
0g‚o‚+v&⇔
4
3
t
= −
⇔
7 4 16
; ;
3 3 3
M
−
D@ CJ:SS=
7 4 16
; ;
3 3 3
M
−
HT 57. :&% = 3 %C !
,
Oxyz
% *
(3; 1;1)
A
−
4 78
2
:
1 2 2
x y z
−
∆ = =
4
( ) : – 5 0
P x y z
+ − =
7&;78B2*@4_&%$(L78
∆
!
0
45
Giải
J>
,
d
u u
∆
K7:GB
∆
H
P
n
::$(
)
2 2 2
( ; ; ), ( 0)
d
u a b c a b c= + + ≠
;B_&%$(A.
P d
n u
⊥
⇒
– 0
a b c
+ =
⇔
b a c
= +
$(
:%.
0
( , ) 45
d
∆ =
⇔
2 2 2 2
2 2 2
2 2 2
2( 2 ) 9( )
2
.3
a b c
a b c a b c
a b c
+ +
= ⇔ + + = + +
+ +
$<(
:$(%$<(.
2
15
14 30 0 0;
7
a
c ac c c+ = ⇔ = = −
/
0
c
=
.>
1
a b
= =
⇒::MB.
3
1 –
1
x t
y t
z
= +
= −
=
/
15
7
a
c = −
.>
7, 15, 8
a c b
= = − = −
⇒::MB.
3 7
1 – 8
1 – 15
x t
y t
z t
= +
= −
=
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN<<
HT 58. :&% = %C !
,
Oxyz
% 78 B.
3 2 1
2 1 1
x y z
− + +
= =
−
( ) : 2 0
P x y z
+ + + =
J> %*B$(7&;78
∆
_&%$(4
Be8=%vn
∆
i_
42
Giải
::MB.
3 2
2
1
x t
y t
z t
= +
= − +
= − −
(1; 3;0)
M
⇒ −
$(::
(1;1;1)
P
n =
4B:G
(2;1; 1)
d
u
= −
;
∆
_&%$(BA:G
, (2; 3;1)
d P
u u n
∆
= = −
J>
( ; ; )
N a b c
; &A
∆
4=
( 1; 3; )
MN a b c
= − +
:
( )
42
MN u
N P
MN
∆
⊥
∈
=
⇔
2 2 2
2 0
2 3 11 0
( 1) ( 3) 42
a b c
a b c
a b c
+ + + =
− + − =
− + + + =
⇒S$sH6<H6s(%S$6EH6IHs(
•S$sH6<H6s(⇒7&;
5 2 5
:
2 3 1
x y z
− + +
∆ = =
−
•S$6EH6IHs(⇒7&;
3 4 5
:
2 3 1
x y z
+ + −
∆ = =
−
HT 59. :&% = 3 > !
,
Oxyz
%
( ) : 1 0
x y z
α
+ − − =
4 78
1
:
1 1 1
x y z
−
∆ = =
− −
4
1
' :
1 1 3
x y z
+
∆ = =
7&;78
d
_&%$
α
(V∆′HB
$∆(k%=%v5-i_
6
2
Giải
$α(::
(1;1; 1)
n
= −
4∆:G
( 1; 1;1)
u
∆
= − −
⇒∆⊥$α(
J>
( )
A
′
= ∆ ∩
α
⇒
(0; 0; 1)
A
−
H
( )
B
= ∆ ∩
α
⇒
(1;0;0)
B
⇒
(1; 0;1)
AB
=
;
( )
d
α
⊂
BV∆′AB2@∆⊥$α(A>78_&%$α(=2Fzk%∆
J>
( ; ; )
d
u a b c
=
:G$B(⇒
. 0
d
u n a b c
= + − =
$(
d
u
='7
AB
$<(
:.
( , ) ( , )
d d d B d
∆ =
⇒
,
6
2
d
d
AB u
u
=
⇔
2 2
2 2 2
2 ( )
6
2
b a c
a b c
+ −
=
+ +
$E(
:n$($E(⇒
0
ac
=
⇔
0
0
a
c
=
=
•
0
a
=
G>
1
b c
= =
⇒
(0;1;1)
d
u =
⇒
0
:
1
x
d y t
z t
=
=
= − +
•
0
c
=
G>
1
a b
= − =
⇒
(1; 1; 0)
d
u = −
⇒
:
1
x t
d y t
z
=
= −
= −
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN<E
Dạng 3: Viết phương trình đường thẳng liên quan đến hai đường thẳng khác
HT 60. :&% = 3 %C !
,
Oxyz
7 &; 78 78 .
1
7 3 9
:
1 2 1
x y z
− − −
∆ = =
−
2
∆
.
3 7
1 2
1 3
x t
y t
z t
= +
= −
= −
Giải
7&;"#
1
∆
.
7 '
3 2 '
9 '
x t
y t
z t
= +
= +
= −
J> SK7L%*78∆
∆
<
⇒
(7 ; 3 2 : 9 ), (3 7 ;1 2 ;1 3 )
M a a a N b b b
+ + − + − −
:GK7L∆
∆
<
u
o$H<H6(
b
o$6pH<HE(
(3 4; 2 2 2; 3 8)
MN b a b a b a
= − − − − − − + −
:.
. 0 0 (7;3;9)
0 (3;1;1)
. 0
MN a MN a a M
b N
MN b MN b
⊥ = =
⇔ ⇔ ⇒
=
⊥ =
)78∆j78 S
D47&;78
3 1 1
:
2 1 4
x y z
− − −
∆ = =
HT 61. :&%=3%C!
,
Oxyz
7&;78B2*
(
)
4; 5;3
M
− −
Vv
78.
1
1 1
1
5 3
: 7 2
x t
d y t
z t
= −
= − +
=
2
2 1 1
:
2 3 5
x y z
d
− + −
= =
−
Giải
:7&;78.
1
1 1
1
5 3
: 7 2
x t
d y t
z t
= −
= − +
=
4
2
2 2
2
2 2
: 1 3
1 5
x t
d y t
z t
= +
= − +
= −
J>
1 2
,
A d d B d d
= ∩ = ∩
⇒
1 1 1
(5 3 ; 7 2 ; )
A t t t
− − +
4
2 2 2
(2 2 ; 1 3 ;1 5 )
B t t t
+ − + −
1 1 1
( 3 9;2 2; 3)
MA t t t
= − + − −
4
2 2 2
(2 6; 3 4; 5 2)
MB t t t
= + + − −
1 2 1 2 1 2 2 1 2 1 2
, ( 13 8 13 16; 13 39 ; 13 24 31 48)
MA MB t t t t t t t t t t t
= − − + + − + − − + +
4@4F⇔
,
MA MB
'7⇔
, 0
MA MB
=
⇔
1
2
2
0
t
t
=
=
⇒
( 1; 3;2), (2; 1;1)
A B
− − −
⇒
(3;2; 1)
AB
= −
)78B2 $6IH6sHE(:G
(3;2; 1)
AB
= −
⇒
4 3
: 5 2
3
x t
d y t
z t
= − +
= − +
= −
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN<I
HT 62. :&%=3%C!
,
Oxyz
%78
1 2
,
∆ ∆
$
α
(7&;
1 2
2
1 1 2
: 5 3 , : , ( ) : 2 0
1 1 2
x t
x y z
y t x y z
z t
α
= +
− + +
∆ = + ∆ = = − + + =
=
7 &; 78 B 2 %
*
1
∆
$
α
(e8V
2
∆
&lN
Giải
:%C!%*@$
α
(
1
∆
%v|3
2 1
5 3 1
(1;2; 1)
2
2 0 1
x t t
y t x
A
z t y
x y z z
= + = −
= + =
⇔ ⇒ −
= =
− + + = = −
:&lN:G
(0;1;0)
j
=
J>B782@V
2
∆
C
(1 ; 1 ; 2 2 )
B t t t
+ − + − +
( ; 3;2 1); 0 3 (3;0; 5)
AB t t t d Oy AB j t AB
= − − ⊥ ⇔ = ⇔ = ⇒ =
)78B2@D
(3;0;5)
AB
=
:G7&;
1 3
2
1 5
x u
y
z u
= +
=
= − +
HT 63. :&% = 3 %C !
,
Oxyz
% 78 7 &;
( ) : 3 12 3 5 0
P x y z
+ − − =
( ) : 3 4 9 7 0
Q x y z
− + + =
4
1
5 3 1
:
2 4 3
x y z
d
+ − +
= =
−
4
2
3 1 2
:
2 3 4
x y z
d
− + −
= =
−
7&;78∆"%"%$(4$?(VB
4B
<
Giải
$(::
(1; 4; 1)
P
n
= −
4 $?(
(3; 4; 9)
Q
n
= −
1
d
:G
1
(2; 4; 3)
u
= −
4
2
d
:G
2
( 2; 3; 4)
u
= −
J>
1
( 5 2 ;3 4 ; 1 3 )
A d A a a a
= ∆ ∩ ⇒ − + − − +
H
2
(3 2 ; 1 3 ;2 4 )
B d B b b b
= ∆ ∩ ⇒ − − + +
:.
( 2 2 8;3 4 4;4 3 3)
AB b a b a b a
= − − + + − − +
J>
1
[ ; ] (8; 3; 4)
4
P Q
u n n
= = − −
:%zi.
/ /( )
/ /( )
P
Q
∆
⇒
∆
AB
'7
u
2 2 8 8
. 3 4 4 3
4 3 3 4
b a k
AB k u b a k
b a k
− − + =
⇔ = ⇔ + − = −
− + = −
1
1
1
a
b
c
=
⇔ = −
=
( 3; 1;2)
(5; 4; 2)
A
B
− −
⇒
− −
)78
∆
j78@F
D47&;78
3 1 2
:
8 3 4
x y z
+ + −
∆ = =
− −