Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Cho hai số phức z1 = 1 + i và z2 √
= 2 − 3i. Tính mơ-đun của số phức z1 + z2 .
√
C. |z1 + z2 | = 5.
D. |z1 + z2 | = 5.
A. |z1 + z2 | = 1.
B. |z1 + z2 | = 13.
Câu 2. Những số nào sau đây vừa là số thực và vừa là số ảo?
A. Khơng có số nào.
B. 0 và 1.
C. C.Truehỉ có số 0.
D. Chỉ có số 1.
Câu 3. Cho số phức z1 = 3 − 2i. Khi đó số phức w = 2z − 3z là
A. 11 + 2i.
B. −3 − 10i.
C. −3 − 2i.
D. −3 + 2i.
Câu 4. Cho z là một số phức. Xét các mệnh đề sau :
I. Nếu z = z thì z là số thực.
II. Mô-đun
√ của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z.
III. |z| = z · z
A. 0.
B. 1.
C. 3.
D. 2.
1
1
25
=
+
. Khi đó phần ảo của z bằng bao nhiêu?
Câu 5. Cho số phức z thỏa
z
1 + i (2 − i)2
A. 31.
B. 17.
C. −17.
D. −31.
Câu 6. Tính
√ mơ-đun của số phức z thỏa mãn z(2 − i) + 13i = 1.
√
34
.
B. |z| = 34.
C. |z| = 34.
A. |z| =
3
i
R2
R2h
Câu 7. Nếu 0 f (x)dx = 4 thì 0 21 f (x) − 2 dx bằng
A. 0.
B. 6.
C. −2.
√
5 34
D. |z| =
.
3
D. 8.
Câu 8. Có bao nhiêu giá trị nguyên của tham số a ∈ (−10; +∞) để hàm số y =
x3 + (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
A. 12.
B. 11.
C. 6.
D. 5.
Câu 9. Phần ảo của số phức z = 2 − 3i là
A. 3.
B. −2.
C. −3.
D. 2.
Câu 10. Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
A. 90◦ .
B. 60◦ .
C. 45◦ .
D. 30◦ .
2
2
−16
−16
Câu 11. Có bao nhiêu số nguyên x thỏa mãn log3 x343
< log7 x 27
?
A. 193.
B. 184.
C. 92.
R 1
Câu 12. Cho x dx = F(x) + C. Khẳng định nào dưới đây đúng?
A. F ′ (x) = ln x.
B. F ′ (x) = − x12 .
C. F ′ (x) = x22 .
D. 186.
D. F ′ (x) = 1x .
Câu 13. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
A. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
B. Phương trình đã cho ln có nghiệm.
c
C. Phương trình đã cho có tích hai nghiệm bằng .
a
−b
D. Phương trình đã cho có tổng hai nghiệm bằng
.
a
Câu 14. Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2 + bz + c = 0 (với
a, b ∈ R ). Khi đó tổng a + b + c bằng bao nhiêu?
A. 2.
B. −2.
C. 0.
D. 1.
Trang 1/5 Mã đề 001
Câu 15. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo√âm). Khi đó, mơ-đun của√số phức w = m2 − 3m + i bằng bao nhiêu ?
√
A. |w| = 73.
B. |w| = 5.
C. |w| = 5.
D. |w| = 3 5.
Câu 16. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z2 −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2
bằng bao nhiêu?
√
13
13
.
C. T = .
D. T = 3.
A. T = 9.
B. T =
2
4
Câu 17. Tìm tất cả các giá trị thực của tham số m để phương trình mz2 + 2mz − 3(m − 1) = 0 khơng có
nghiệm thực là
3
3
3
A. m ≥ 0.
B. 0 < m < .
C. m < 0 hoặc m > . D. 0 ≤ m < .
4
4
4
Câu 18. Biết z = 1 − 3i là một nghiệm của phương trình z2 + az + b = 0 ( với a, b ∈ R ). Khi đó hiệu
a − b bằng
A. 12.
B. −12.
C. 8.
D. −8.
Câu 19. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 5 = 0.
B. x − y + 8 = 0.
C. x − y + 4 = 0.
D. x + y − 8 = 0.
Câu 20. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z√2 |.
√
√
√
2
3
.
B. P = 3.
C. P =
.
D. P = 2.
A. P =
2
2
Câu 21. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 2π.
B. 4π.
C. 3π.
D. π.
z+i+1
là số thuần ảo?
Câu 22. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
z + z + 2i
A. Một đường tròn.
B. Một đường thẳng.
C. Một Elip.
D. Một Parabol.
Câu 23. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 1)2 + (y − 4)2 = 125.
B. (x − 5)2 + (y − 4)2 = 125.
C. (x + 1)2 + (y − 2)2 = 125.
D. x = 2.
Câu 24. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Hai đường thẳng.
B. Parabol.
C. Đường tròn.
D. Một đường thẳng.
z−z
=2?
Câu 25. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một đường thẳng.
B. Một Parabol.
C. Một đường tròn.
D. Một Elip.
Câu 26. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.
√
√
√
A. max T = 3 5.
B. max T = 2 10.
C. max T = 2 5.
D. max T = 3 2.
√
Câu 27. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|.
√
√
√
A. |z| = 50.
B. |z| = 33.
C. |z| = 5 2.
D. |z| = 10.
Câu 28. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
15
15
25
A. S = .
B. S = .
C. S = .
4
2
2
D. S =
1+i
z
2
25
.
4
Trang 2/5 Mã đề 001
Câu 29. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của
√ tam giác MNP đều
√ là số phức k là
√ z1 , z2 và số phức w√ = x + iy trên mặt phẳng phức. Để
27 + i.
B. w = 1√+ 27i hoặcw =√1 − 27i.
A. w = − 27
√ − i hoặcw = − √
C. w = 1 + 27 hoặcw = 1 − 27.
D. w = 27 − i hoặcw = 27 + i.
Câu 30. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác đều.
C. Tam giác OAB là tam giác cân.
z
là
w
B. Tam giác OAB là tam giác vuông.
D. Tam giác OAB là tam giác nhọn.
z+i+1
là số thuần ảo?
z + z + 2i
C. Một đường trịn.
D. Một Elip.
Câu 31. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
A. Một đường thẳng.
B. Một Parabol.
Câu 32. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 3π.
B. π.
C. 2π.
D. 4π.
Câu 33. Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2
A. 18.
B. 9.
C. 8.
D. 4.
Câu 34. Cho z1 , z2 , z3 là các số phức thỏa mãn |z1 | = |z2 | = |z3 | = 1. Khẳng định nào sau đây đúng?
A. |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 |.
B. |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 |.
C. |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 |.
D. |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 |.
√
2 2
. Mệnh đề nào dưới đây
Câu 35. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
3
đúng?
8
A. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = .
B. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.
3
√
√
2 2
2
2
2
2
2
2
.
C. |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = 2 2.
D. |z1 + z2 | + |z2 + z3 | + |z3 + z1 | =
3
Câu 36. Cho số phức z thỏa mãn |z| + z = 0. Mệnh đề nào đúng?
A. Phần thực của z là số âm.
B. z là số thuần ảo.
C. z là một số thực không dương.
D. |z| = 1.
Câu 37. (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z|.
Đặt P = 8(b2 − a2 ) − 12. Mệnh đề nào dưới đây đúng?
2
2
A. P = (|z| − 4)2 .
B. P = (|z| − 2)2 .
C. P = |z|2 − 2 .
D. P = |z|2 − 4 .
√
2
Câu 38. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
. Giá trị lớn nhất của biểu thức
2
P = |z1 + z2 | + 2|z2 + z3 | + 3|z3 + z1 | bằng bao nhiêu?
√
√
√
√
3 6
10 2
4 5
7 2
A. Pmax =
.
B. Pmax =
.
C. Pmax =
.
D. Pmax =
.
2
3
5
3
Câu 39. Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vng cân tại A và BC = 2a.
Tính thể tích V của khối lăng trụ ABC.A′ B′C ′ .
A. V = 6a3 .
B. V = a3 .
C. V = 12a3 .
D. V = 3a3 .
Câu 40. Đồ thị hàm số y = −x3 + 3x2 − 3x + 2 có bao nhiêu điểm cực trị?
A. 2.
B. 0.
C. 3.
D. 1.
Câu 41. Trong các hình dưới đây, có bao nhiêu hình đa diện?
Trang 3/5 Mã đề 001
Hình 1
A. 2.
Hình 3
Hình 2
B. 1.
C. 3.
D. 0.
2x − 3
. Trong các khẳng định sau, khẳng định nào đúng?
−x + 2
A. Hàm số đồng biến trên khoảng (−2; 2).
B. Hàm số đồng biến trên khoảng (2; +∞).
C. Hàm số đồng biến trên tập xác định của nó. D. Hàm số đồng biến trên khoảng (−2; +∞).
Câu 42. Cho hàm số y =
Câu 43. Cho tứ diện OABC có các cạnh OA, OB, OC đơi một vng góc nhau và OA = OB = OC = 1.
Tính thể tích V của khối tứ diện OABC.
1
1
1
B. V = 1.
C. V = .
D. V = .
A. V = .
6
2
3
Câu 44. Cho hàm số y = f (x) có bảng biến thiên như sau:
x
−∞
y′
+∞
−2
−
−
+∞
−2
y
−2
−∞
Đồ thị hàm số y = f (x) có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
A. 3.
B. 2.
C. 1.
D. 4.
Câu 45. Cho hình chóp S .ABC có đáy là tam giác vng tại B, S A vng góc với đáy và S A = AB (tham
khảo hình bên). Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
A. 90◦ .
B. 30◦ .
C. 45◦ .
D. 60◦ .
Câu 46. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị?
A. 15.
B. 7.
C. 3.
D. 17.
Câu 47. Tích tất cả các nghiệm của phương trình ln2 x + 2 ln x − 3 = 0 bằng
A. −2.
B. e12 .
C. −3.
D.
2
−16
Câu 48. Có bao nhiêu số nguyên x thỏa mãn log3 x343
< log7
A. 193.
B. 186.
C. 92.
1
.
e3
x2 −16
?
27
D. 184.
Câu 49. Trong không gian Oxyz, mặt phẳng (P) : x + y + z + 1 = 0 có một vectơ pháp tuyến là:
−
−
−
−
A. →
n1 = (−1; 1; 1).
B. →
n4 = (1; 1; −1).
C. →
n3 = (1; 1; 1).
D. →
n2 = (1; −1; 1).
Câu 50. Nếu
A. −2.
R2
0
f (x)dx = 4 thì
B. 8.
R 2 h1
0
i
f
(x)
−
2
dx bằng
2
C. 6.
D. 0.
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001