Tải bản đầy đủ (.pdf) (5 trang)

Đề luyện thi thpt môn toán (502)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (123.2 KB, 5 trang )

Free LATEX

ĐỀ LUYỆN THI THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001

Câu 1. Cho lăng trụ đều ABC.A′ B′C ′ có tất cả các cạnh đều bằng a. Tính khoảng cách giữa hai đường
thẳng√AB′ và BC ′ .

5a
2a
3a
a
A.
.
B. √ .
.
C. √ .
D.
3
2
5
5
R1 √3
Câu 2. Tính I =
7x + 1dx
0

45


20
60
21
B. I = .
C. I = .
D. I = .
A. I = .
8
28
7
28
′ ′ ′ ′
Câu 3. Cho hình lập phương ABCD.A B C D . Tính góc giữa hai đường thẳng AC và BC ′ .
A. 450 .
B. 360 .
C. 600 .
D. 300 .
Câu 4. Tìm tất cả các giá trị của tham số m để hàm số y = (1 − m)x4 + 3x2 chỉ có cực tiểu mà khơng có
cực đại
A. m > 1.
B. m ≥ 1.
C. m < 1.
D. m ≤ 1.
m
R
dx
Câu 5. Cho số thực dươngm. Tính I =
theo m?
2
0 x + 3x + 2

m+2
m+1
m+2
2m + 2
A. I = ln(
).
B. I = ln(
).
C. I = ln(
).
D. I = ln(
).
m+1
m+2
2m + 2
m+2
Câu 6. Cho hình chóp đều S .ABCcó cạnh đáy bằng a và cạnh bên bằng
tích của khối chóp là:
q b. Thể

√ 2
a2 b2 − 3a2
3a b
.
B. VS .ABC =
.
A. VS .ABC =
√ 12
√12 2
3ab

a2 3b2 − a2
C. VS .ABC =
.
D. VS .ABC =
.
12
12

Câu 7.√Cho lăng trụ đều ABC.A′ B′C ′ có đáy bằng a, AA′ = 4 3a. Thể tích khối√lăng trụ đã cho là:
A. 8 3a3 .
B. a3 .
C. 3a3 .
D. 3a3 .
Câu 8. Hàm số nào sau đây đồng biến trên R?
A. y = x√2 .

C. y = x2 + x + 1 − x2 − x + 1.

B. y = tan x.
D. y = x4 + 3x2 + 2.

Câu 9. Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2). Tìm tọa độ
điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450 .
A. C(−3; 1; 1).
B. C(3; 7; 4).
C. C(1; 5; 3).
D. C(5; 9; 5).
Câu 10. Giá trị nhỏ nhất của hàm số y = 2x + cos xtrên đoạn [0; 1] bằng?
A. 1.
B. −1.

C. π.
D. 0.
2x + 2017
Câu 11. Cho hàm số y =




(1). Mệnh đề nào dưới đây là đúng?


x

+ 1



A. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x = −1..
B. Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y = 2 và khơng có tiệm cận đứng.
C. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng
x = −1, x = 1..
D. Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và khơng có tiệm cận
đứng.
Trang 1/5 Mã đề 001


a3
Câu 12. Cho hình chóp đều S .ABCD có cạnh đáy bằng a và thể tích bằng . Tìm góc giữa mặt bên và
6
mặt đáy của hình chóp đã cho.

A. 1350 .
B. 300 .
C. 450 .
D. 600 .
Câu 13. Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng
biến thiên như hình bên. Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân
biệt.
S
S
7
7
7
A. ( ; +∞)
B. ( ; 2] [22; +∞) . C. [22; +∞).
D. [ ; 2] [22; +∞).
4
4
4
.
R
Câu 14. Biết f (u)du = F(u) + C Mệnh đề nào dưới đây đúng?
R
R
1
A. f (2x − 1)dx = F(2x − 1) + C .
B. f (2x − 1)dx = 2F(2x − 1) + C.
2
R
R
C. f (2x − 1)dx = F(2x − 1) + C.

D. f (2x − 1)dx = 2F(x) − 1 + C.
Câu 15. Cho tứ diện đều ABCD có cạnh bằng a. Tính diện tích xung quanh của hình trụ có đáy là đường
trịn ngoại
tam giác BCD và√có chiều cao bằng chiều cao của tứ diện.

√ tiếp
2
√ 2
π 2.a2
2π 2.a2
π 3.a
.
B.
.
C. π 3.a .
D.
.
A.
2
3
3
Câu 16. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = 1 + 2ty = 2 + (m − 1)tz = 3 − t.
Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?
A. m = 1.
B. m , 0.
C. m , −1.
D. m , 1.
Câu 17. Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y = −x2 + 2mx − 1 − 2m trên
đoạn [−1; 2] nhỏ hơn 2.
7

A. m ∈ (0; 2).
B. m ≥ 0.
C. m ∈ (−1; 2).
D. −1 < m < .
2
Câu 18. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Giao điểm của (P)
và trục tung có tọa độ là
A. (0; −5; 0).
B. (0; 5; 0).
C. (0; 1; 0).
D. (0; 0; 5).
Câu 19. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3). Biết C là
một điểm trên mặt phẳng (P):x + z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM,
AN để tứ giác ABCD là hình thoi. Tọa độ điểm C là:
21
A. C(20; 15; 7).
B. C(6; −17; 21).
C. C(8; ; 19).
D. C(6; 21; 21).
2

Câu 20. Cho hình phẳng (D) giới hạn bởi các đường y = x, y = x, x = 2 quay quanh trục hồnh. Tìm
thể tích V của khối tròn xoay tạo thành.
10π
π
A. V = .
B. V =
.
C. V = 1.
D. V = π.

3
3
−u (2; −2; 1), kết luận nào sau đây đúng?
Câu 21. Trong không gian với hệ tọa độ Oxyz cho →
−u | = 9.
−u | = 1.
−u | = 3.
−u | = √3.
A. |→
B. |→
C. |→
D. |→
Câu 22. Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng
A. πR3 .
B. 4πR3 .
C. 6πR3 .
D. 2πR3 .
Câu 23. Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (−2; 3; 1).
B. M ′ (2; 3; 1).
C. M ′ (2; −3; −1).
D. M ′ (−2; −3; −1).
Câu 24. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
A. .
B. 1.
C. −6.
D. 0.
6

Câu 25. Một mặt cầu có diện tích bằng 4πR2 thì thể tích của khối cầu đó là
4
3
A. 4πR3 .
B. πR3 .
C. πR3 .
D. πR3 .
4
3
Trang 2/5 Mã đề 001


Câu 26. Tính thể tích khối trịn xoay khi quay xung quanh trục hồnh hình phẳng giới hạn bởi các đường
1
y = , x = 1, x = 2 và trục hoành.
x
π


π
B. V = .
C. V =
.
D. V =
.
A. V = .
2
3
2
5

Câu 27. Cường độ một trận động đất M (richter) được cho bởi công thức M = log A − log A0 , với A là
biên độ rung chấn tối đa và A0 là một biên độ chuẩn (hằng số). Đầu thế kỷ 20, một trận động đất ở San
Francisco có cường độ 8,3 độ Richter. Trong cùng năm đó, trận động đất khác Nam Mỹ có biên độ mạnh
hơn gấp 4 lần. Cường độ của trận động đất ở Nam Mỹ có kết quả gần đúng bằng:
A. 11.
B. 33,2.
C. 2,075.
D. 8,9.
2x − 3
đạt giá trị lớn nhất trên đoạn [1; 3] bằng
Câu 28. Với giá trị nào của tham số m thì hàm số y =
x + m2
1
:
4

D. m = ±3.
A. m = ±1.
B. m = ±2.
C. m = ± 3.
x−3
y−6
z−1
Câu 29. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 :
=
=

−2
2
1

d2 : x = ty = −tz = 2 (t ∈ R). Đường thẳng đi qua điểm A(0; 1; 1), vng góc với d1 và cắt d2 có phương
trình là:
y−1 z−1
x y−1 z−1
x
A.
=
=
.
B. =
=
.
−1
3
4
1
−3
4
x−1
y
z−1
x
y−1 z−1
C.
=
=
.
D.
=
=

.
−1
−3
4
−1
−3
4









3 2
1



m


3
Câu 30. Xác định tập tất cả các giá trị của tham số m để phương trình

×